Publication:
Selecting attributes for soft-computing analysis in hybrid intelligent systems

dc.contributor.authorPuntip Pattaraintakornen_US
dc.contributor.authorNick Gereoneen_US
dc.contributor.authorKanlaya Naruedomkulen_US
dc.contributor.otherDalhousie Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-06-21T08:13:00Z
dc.date.available2018-06-21T08:13:00Z
dc.date.issued2005-12-01en_US
dc.description.abstractUse of medical survival data challenges researchers because of the size of data sets and vagaries of their structures. Such data demands powerful analytical models for survival analysis, where the prediction of the probability of an event is of interest. We propose a hybrid rough sets intelligent system architecture for survival analysis (HYRIS). Given the survival data set, our system is able to identify the covariate levels of particular attributes according to the Kaplan-Meier method. We use 'concerned' and 'probe' attributes to investigate the risk factor in the survival analysis domain. Rough sets theory generates the probe reducts used to select informative attributes to analyze survival models. Prediction survival models are constructed with respect to reducts/probe reducts. To demonstrate the utility of our methods, we investigate a particular problem using various data sets: geriatric data, melanoma data, pneumonia data and primary biliary cirrhosis data. Our experimental results analyze data of risk factors and induce symbolic rules which yield insight into hidden relationships, efficiently and effectively. © Springer-Verlag Berlin Heidelberg 2005.en_US
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol.3642 LNAI, (2005), 698-708en_US
dc.identifier.doi10.1007/11548706_74en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-33645960133en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/16465
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645960133&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleSelecting attributes for soft-computing analysis in hybrid intelligent systemsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645960133&origin=inwarden_US

Files

Collections