Publication:
Influence of Different Angulations of Force in Stress Distribution in Implant Retained Finger Prosthesis: A Finite Element Study

dc.contributor.authorPokpong Amornviten_US
dc.contributor.authorDinesh Rokayaen_US
dc.contributor.authorKonrawee Keawcharoenen_US
dc.contributor.authorNimit Thongpulsawasdien_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-09T03:18:25Z
dc.date.available2018-11-09T03:18:25Z
dc.date.issued2014-02-27en_US
dc.description.abstractThe success in implant retained finger prosthesis is determined by the implant loading and thecharacteristic of the force is a determining factor in implant loading. The stress distribution varies in finger bone when the loading forces are applied along the various angulations. Aim of this article was to evaluate stress distributions in finger bone when the loading forces are applied along the various angulations of force over the implant using finite element analysis.A finger bone model containing cortical bone and cancellous bone was constructed by using radiograph. AstratechOsssospeed bone level implant of 4.5 mm diameter and 14 mm length was selected for the study. The different angulations of force (0, 30, 60 and 90 degree) were applied to the implant abutment and the stresses generated where analyzed.Results showed when the force was applied at various angulations, the stress generated increased from 0 degree to 90 degree. The maximum stress (124.01 MPa) was at 90 degree force and minimum (31.67 MPa) was at 0 degree force. The maximum stresses were located around the neck of the implant. The cortex bone receives more stress than cancellous bone when the force is given along the long axis of the implant. So, to achieve long term success, the implant systems must confront biomaterial and biomechanical problems, including in vivo forces on implants, load transmission to the interface and prevent force along the long axis of the implant. © IDOSI Publications, 2014.en_US
dc.identifier.citationWorld Applied Sciences Journal. Vol.30, No.4 (2014), 481-485en_US
dc.identifier.doi10.5829/idosi.wasj.2014.30.04.13967en_US
dc.identifier.issn19916426en_US
dc.identifier.issn18184952en_US
dc.identifier.other2-s2.0-84894381627en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/34971
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84894381627&origin=inwarden_US
dc.subjectMultidisciplinaryen_US
dc.titleInfluence of Different Angulations of Force in Stress Distribution in Implant Retained Finger Prosthesis: A Finite Element Studyen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84894381627&origin=inwarden_US

Files

Collections