Publication: Open-source discovery of chemical leads for next-generation chemoprotective antimalarials
Issued Date
2018-12-07
Resource Type
ISSN
10959203
00368075
00368075
Other identifier(s)
2-s2.0-85057744039
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Science. Vol.362, No.6419 (2018)
Suggested Citation
Yevgeniya Antonova-Koch, Stephan Meister, Matthew Abraham, Madeline R. Luth, Sabine Ottilie, Amanda K. Lukens, Tomoyo Sakata-Kato, Manu Vanaerschot, Edward Owen, Juan Carlos Jado Rodriguez, Steven P. Maher, Jaeson Calla, David Plouffe, Yang Zhong, Kaisheng Chen, Victor Chaumeau, Amy J. Conway, Case W. McNamara, Maureen Ibanez, Kerstin Gagaring, Fernando Neria Serrano, Korina Eribez, Cullin Mc Lean Taggard, Andrea L. Cheung, Christie Lincoln, Biniam Ambachew, Melanie Rouillier, Dionicio Siegel, François Nosten, Dennis E. Kyle, Francisco Javier Gamo, Yingyao Zhou, Manuel Llinás, David A. Fidock, Dyann F. Wirth, Jeremy Burrows, Brice Campo, Elizabeth A. Winzeler Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. Vol.362, No.6419 (2018). doi:10.1126/science.aat9446 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/47459
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Open-source discovery of chemical leads for next-generation chemoprotective antimalarials
Author(s)
Yevgeniya Antonova-Koch
Stephan Meister
Matthew Abraham
Madeline R. Luth
Sabine Ottilie
Amanda K. Lukens
Tomoyo Sakata-Kato
Manu Vanaerschot
Edward Owen
Juan Carlos Jado Rodriguez
Steven P. Maher
Jaeson Calla
David Plouffe
Yang Zhong
Kaisheng Chen
Victor Chaumeau
Amy J. Conway
Case W. McNamara
Maureen Ibanez
Kerstin Gagaring
Fernando Neria Serrano
Korina Eribez
Cullin Mc Lean Taggard
Andrea L. Cheung
Christie Lincoln
Biniam Ambachew
Melanie Rouillier
Dionicio Siegel
François Nosten
Dennis E. Kyle
Francisco Javier Gamo
Yingyao Zhou
Manuel Llinás
David A. Fidock
Dyann F. Wirth
Jeremy Burrows
Brice Campo
Elizabeth A. Winzeler
Stephan Meister
Matthew Abraham
Madeline R. Luth
Sabine Ottilie
Amanda K. Lukens
Tomoyo Sakata-Kato
Manu Vanaerschot
Edward Owen
Juan Carlos Jado Rodriguez
Steven P. Maher
Jaeson Calla
David Plouffe
Yang Zhong
Kaisheng Chen
Victor Chaumeau
Amy J. Conway
Case W. McNamara
Maureen Ibanez
Kerstin Gagaring
Fernando Neria Serrano
Korina Eribez
Cullin Mc Lean Taggard
Andrea L. Cheung
Christie Lincoln
Biniam Ambachew
Melanie Rouillier
Dionicio Siegel
François Nosten
Dennis E. Kyle
Francisco Javier Gamo
Yingyao Zhou
Manuel Llinás
David A. Fidock
Dyann F. Wirth
Jeremy Burrows
Brice Campo
Elizabeth A. Winzeler
Other Contributor(s)
GlaxoSmithKline plc, Spain
Harvard School of Public Health
University of California, San Diego
The University of Georgia
Columbia University Medical Center
University of California, San Diego, School of Medicine
Mahidol University
The Genomics Institute of the Novartis Research Foundation
Nuffield Department of Clinical Medicine
University of South Florida, Tampa
Pennsylvania State University
Broad Institute
BioSero
California Institute for Biomedical Research
Medicines for Malaria Venture
Harvard School of Public Health
University of California, San Diego
The University of Georgia
Columbia University Medical Center
University of California, San Diego, School of Medicine
Mahidol University
The Genomics Institute of the Novartis Research Foundation
Nuffield Department of Clinical Medicine
University of South Florida, Tampa
Pennsylvania State University
Broad Institute
BioSero
California Institute for Biomedical Research
Medicines for Malaria Venture
Abstract
© 2017 The Authors, some rights reserved To discover leads for next-generation chemoprotective antimalarial drugs, we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing Plasmodium spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1 micromolar). Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis. Further testing through multiple phenotypic assays that predict stage-specific and multispecies antimalarial activity distinguished compound classes that are likely to provide symptomatic relief by reducing asexual blood-stage parasitemia from those which are likely to only prevent malaria. Target identification by using functional assays, in vitro evolution, or metabolic profiling revealed 58 mitochondrial inhibitors but also many chemotypes possibly with previously unidentified mechanisms of action.