Publication:
COMPASS identifies T-cell subsets correlated with clinical outcomes

dc.contributor.authorLin Linen_US
dc.contributor.authorGreg Finaken_US
dc.contributor.authorKevin Usheyen_US
dc.contributor.authorChetan Seshadrien_US
dc.contributor.authorThomas R. Hawnen_US
dc.contributor.authorNicole Frahmen_US
dc.contributor.authorThomas J. Scribaen_US
dc.contributor.authorHassan Mahomeden_US
dc.contributor.authorWillem Hanekomen_US
dc.contributor.authorPierre Alexandre Barten_US
dc.contributor.authorGiuseppe Pantaleoen_US
dc.contributor.authorGeorgia D. Tomarasen_US
dc.contributor.authorSupachai Rerks-Ngarmen_US
dc.contributor.authorJaranit Kaewkungwalen_US
dc.contributor.authorSorachai Nitayaphanen_US
dc.contributor.authorPunnee Pitisuttithumen_US
dc.contributor.authorNelson L. Michaelen_US
dc.contributor.authorJerome H. Kimen_US
dc.contributor.authorMerlin L. Robben_US
dc.contributor.authorRobert J. O'Connellen_US
dc.contributor.authorNicos Karasavvasen_US
dc.contributor.authorPeter Gilberten_US
dc.contributor.authorStephen C. De Rosaen_US
dc.contributor.authorM. Juliana McElrathen_US
dc.contributor.authorRaphael Gottardoen_US
dc.contributor.otherFred Hutchinson Cancer Research Centeren_US
dc.contributor.otherUniversity of Washington, Seattleen_US
dc.contributor.otherSouth African Tuberculosis Vaccine Initiativeen_US
dc.contributor.otherCentre Hospitalier Universitaire Vaudoisen_US
dc.contributor.otherDuke University Medical Centeren_US
dc.contributor.otherThailand Ministry of Public Healthen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherArmed Forces Research Institute of Medical Sciences, Thailanden_US
dc.contributor.otherWalter Reed Army Institute of Researchen_US
dc.contributor.otherHJFen_US
dc.date.accessioned2018-11-23T09:41:43Z
dc.date.available2018-11-23T09:41:43Z
dc.date.issued2015-06-11en_US
dc.description.abstract© 2015 Nature America, Inc. All rights reserved. Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.en_US
dc.identifier.citationNature Biotechnology. Vol.33, No.6 (2015), 610-616en_US
dc.identifier.doi10.1038/nbt.3187en_US
dc.identifier.issn15461696en_US
dc.identifier.issn10870156en_US
dc.identifier.other2-s2.0-84930945915en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/35437
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84930945915&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemical Engineeringen_US
dc.subjectEngineeringen_US
dc.subjectImmunology and Microbiologyen_US
dc.titleCOMPASS identifies T-cell subsets correlated with clinical outcomesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84930945915&origin=inwarden_US

Files

Collections