Publication:
Identification of ischemic heart disease via machine learning analysis on magnetocardiograms

dc.contributor.authorTanawut Tantimongcolwaten_US
dc.contributor.authorThanakorn Naennaen_US
dc.contributor.authorChartchalerm Isarankura-Na-Ayudhyaen_US
dc.contributor.authorMark J. Embrechtsen_US
dc.contributor.authorVirapong Prachayasittikulen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherRensselaer Polytechnic Instituteen_US
dc.date.accessioned2018-07-12T02:24:35Z
dc.date.available2018-07-12T02:24:35Z
dc.date.issued2008-07-01en_US
dc.description.abstractIschemic heart disease (IHD) is predominantly the leading cause of death worldwide. Early detection of IHD may effectively prevent severity and reduce mortality rate. Recently, magnetocardiography (MCG) has been developed for the detection of heart malfunction. Although MCG is capable of monitoring the abnormal patterns of magnetic field as emitted by physiologically defective heart, data interpretation is time-consuming and requires highly trained professional. Hence, we propose an automatic method for the interpretation of IHD pattern of MCG recordings using machine learning approaches. Two types of machine learning techniques, namely back-propagation neural network (BNN) and direct kernel self-organizing map (DK-SOM), were applied to explore the IHD pattern recorded by MCG. Data sets were obtained by sequential measurement of magnetic field emitted by cardiac muscle of 125 individuals. Data were divided into training set and testing set of 74 cases and 51 cases, respectively. Predictive performance was obtained by both machine learning approaches. The BNN exhibited sensitivity of 89.7%, specificity of 54.5% and accuracy of 74.5%, while the DK-SOM provided relatively higher prediction performance with a sensitivity, specificity and accuracy of 86.2%, 72.7% and 80.4%, respectively. This finding suggests a high potential of applying machine learning approaches for high-throughput detection of IHD from MCG data. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationComputers in Biology and Medicine. Vol.38, No.7 (2008), 817-825en_US
dc.identifier.doi10.1016/j.compbiomed.2008.04.009en_US
dc.identifier.issn00104825en_US
dc.identifier.other2-s2.0-45549095213en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/19140
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=45549095213&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleIdentification of ischemic heart disease via machine learning analysis on magnetocardiogramsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=45549095213&origin=inwarden_US

Files

Collections