Publication: Potential Use of Recycled PET in Comparison with Liquid Crystalline Polyester as a Dual Functional Additive for Enhancing Heat Stability and Reinforcement for High Density Polyethylene Composite Fibers
Issued Date
2013-01-01
Resource Type
ISSN
15662543
Other identifier(s)
2-s2.0-84874022153
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Journal of Polymers and the Environment. Vol.21, No.1 (2013), 191-206
Suggested Citation
Supattra Kayaisang, Sunan Saikrasun, Taweechai Amornsakchai Potential Use of Recycled PET in Comparison with Liquid Crystalline Polyester as a Dual Functional Additive for Enhancing Heat Stability and Reinforcement for High Density Polyethylene Composite Fibers. Journal of Polymers and the Environment. Vol.21, No.1 (2013), 191-206. doi:10.1007/s10924-012-0446-1 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/31803
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Potential Use of Recycled PET in Comparison with Liquid Crystalline Polyester as a Dual Functional Additive for Enhancing Heat Stability and Reinforcement for High Density Polyethylene Composite Fibers
Other Contributor(s)
Abstract
The recycle poly(ethylene terephthalate) (rPET) used as an alternative reinforcing material for in situ microfibrillar-reinforced composite, compared with liquid crystalline polymer (LCP), was investigated. The PE-LCP and PE-rPET composites were prepared as fiber using hot drawing process. The effects of draw ratios and compatibilizer (styrene-ethylene butylene-styrene-grafted maleic anhydride, SEBS-g-MA) loading on morphology, tensile properties, thermal stability and dynamic mechanical characteristics of the LCP- and rPET-composite systems were studied. In as-spun samples containing compatibilizer, the fibrillation of LCP domains was observed whereas rPET domains appeared as droplets. After drawing, good fibrillation of LCP and rPET domains is remarkably observed especially in the composite fibers with compatibilizer loading. The mechanical properties of the composite fibers were strongly depended on the fibrillation of the dispersed phases which directly related the levels of draw ratio and compatibilizer loading. The mechanical properties enhanced by SEBS-g-MA were more pronounced in the rPET than LCP systems. The presence of rPET in the composite fibers alone or with the compatibilizer clearly improved the thermal resistance of PE whereas no significant change in thermal stability for the LCP-containing composite fibers with and without compatibilizer loading. The results from dynamic mechanical analysis revealed that an improvement in dynamic mechanical properties of the composite fibers could be achieved by drawing with optimum draw ratio together with optimum compatibilizer dosage. All obtained results suggested the high potential of rPET minor blend-component as a good reinforcing and thermal resistant materials for the thermoplastic composite fiber, in replacing the more expensive LCP. © 2012 Springer Science+Business Media, LLC.