Publication:
Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes

dc.contributor.authorDaniel E. Dunnen_US
dc.contributor.authorPatcharin Tanawattanacharoenen_US
dc.contributor.authorPiernicola Boccunien_US
dc.contributor.authorShoichi Nagakuraen_US
dc.contributor.authorSpencer W. Greenen_US
dc.contributor.authorMartha R. Kirbyen_US
dc.contributor.authorMysore S.Anil Kumaren_US
dc.contributor.authorStephen Rosenfelden_US
dc.contributor.authorNeal S. Youngen_US
dc.contributor.otheren_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherKumamoto Universityen_US
dc.contributor.otherDrexel Universityen_US
dc.contributor.otherNational Heart, Lung, and Blood Instituteen_US
dc.date.accessioned2018-09-07T08:55:13Z
dc.date.available2018-09-07T08:55:13Z
dc.date.issued1999-09-21en_US
dc.description.abstractBackground: Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem-cell disorder in which the affected cells are deficient in glycosylphosphatidylinositol (GPI)-anchored proteins. Paroxysmal nocturnal hemoglobinuria is frequently associated with aplastic anemia, although the basis of this relation is unknown. Objective: To assess the PNH status of patients with diverse marrow failure syndromes. Design: Correlation of cytofluorometric data with clinical features. Setting: Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland. Patients: 115 patients with aplastic anemia, 39 patients with myelodysplasia, 28 patients who had recently undergone bone marrow transplantation, 18 patients with cancer that was treated with chemotherapy, 13 patients with large granular lymphocytosis, 20 controls who had received renal allografts, and 21 healthy participants. Intervention: Patients with aplastic anemia, myelodysplasia, or renal allografts received antithymocyte globulin. Measurements: Flow cytometry was used to assess expression of GPI-anchored proteins on granulocytes. Results: Evidence of PNH was found in 25 of 115 (22%) patients with aplastic anemia. No patient with normal GPI-anchored protein expression at presentation developed PNH after therapy (n = 16). Nine of 39 (23%) patients with myelodysplasia had GPI-anchored protein-deficient cells. Abnormal cells were not detected in patients with constitutional or other forms of bone marrow failure or in renal allograft recipients who had received antithymocyte globulin. Aplastic anemia is known to respond to immunosuppressive therapy; in myelodysplasia, the presence of a PNH population was strongly correlated with hematologic improvement after administration of antithymocyte globulin (P = 0.0015). Conclusions: Flow cytometric analysis is superior to the Ham test and permits concomitant diagnosis of PNH in about 20% of patients with myelodysplasia (a rate similar to that seen in patients with aplastic anemia). The presence of GPI-anchored protein-deficient cells in myelodysplasia predicts responsiveness to immunosuppressive therapy. Early emergence of GPI-anchored protein-deficient hematopoiesis in a patient with marrow failure may point to an underlying immune pathogenesis.en_US
dc.identifier.citationAnnals of Internal Medicine. Vol.131, No.6 (1999), 401-408en_US
dc.identifier.doi10.7326/0003-4819-131-6-199909210-00002en_US
dc.identifier.issn00034819en_US
dc.identifier.other2-s2.0-0033592318en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/25582
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033592318&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleParoxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033592318&origin=inwarden_US

Files

Collections