Publication:
Estimation of algae growth model parameters by a double layer genetic algorithm

dc.contributor.authorArtorn Nokkaewen_US
dc.contributor.authorBusayamas Pimpunchaten_US
dc.contributor.authorCharin Modchangen_US
dc.contributor.authorSomkid Amornsamankulen_US
dc.contributor.authorWannapong Triampoen_US
dc.contributor.authorDarapond Triampoen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherKing Mongkut's Institute of Technology Ladkrabangen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.date.accessioned2018-06-11T04:45:06Z
dc.date.available2018-06-11T04:45:06Z
dc.date.issued2012-11-01en_US
dc.description.abstractThis paper presents a double layer genetic algorithm (DLGA) to improve performance of the information-constrained parameter estimations. When a simple genetic algorithm (SGA) fails, a DLGA is applied to the optimization problem in which the initial condition is missing. In this study, a DLGA is specifically designed. The two layers of the SGA serve different purposes. The two optimizations are applied separately but sequentially. The first layer determines the average value of a state variable as its derivative is zero. The knowledge from the first layer is utilized to guide search in the second layer. The second layer uses the obtained average to optimize model parameters. To construct a fitness function for the second layer, the relative derivative function of the average is combined into the fitness function of the ordinary least square problem as a value control. The result shows that the DLGA has better performance. When missing an initial condition, the DLGA provides more consistent numerical values for model parameters. Also, simulation produced by DLGA is more reasonable values than those produced by the SGA.en_US
dc.identifier.citationWSEAS Transactions on Computers. Vol.11, No.11 (2012), 377-386en_US
dc.identifier.issn22242872en_US
dc.identifier.issn11092750en_US
dc.identifier.other2-s2.0-84872437778en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/14029
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84872437778&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleEstimation of algae growth model parameters by a double layer genetic algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84872437778&origin=inwarden_US

Files

Collections