Publication:
Emerging 2D/0D g-C<inf>3</inf>N<inf>4</inf>/SnO<inf>2</inf> S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation

dc.contributor.authorViet Van Phamen_US
dc.contributor.authorDiem Quynh Maien_US
dc.contributor.authorDai Phat Buien_US
dc.contributor.authorTran Van Manen_US
dc.contributor.authorBicheng Zhuen_US
dc.contributor.authorLiuyang Zhangen_US
dc.contributor.authorJariyaporn Sangkawornen_US
dc.contributor.authorJonggol Tantirungrotechaien_US
dc.contributor.authorVichai Reutrakulen_US
dc.contributor.authorThi Minh Caoen_US
dc.contributor.otherViet Nam National University Ho Chi Minh Cityen_US
dc.contributor.otherĐại học Công nghệ Thành phố Hồ Chí Minhen_US
dc.contributor.otherWuhan University of Technologyen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2022-08-04T08:39:59Z
dc.date.available2022-08-04T08:39:59Z
dc.date.issued2021-10-01en_US
dc.description.abstractEnhancing and investigating the photocatalytic activity over composites for new models remains a challenge. Here, an emerging S-scheme photocatalyst composed of 2D/0D g-C3N4 nanosheets-assisted SnO2 nanoparticles (g-C3N4/SnO2) is successfully synthesized and used for degrading nitrogen oxide (NO), which causes negative impacts on the environment. A wide range of characterization techniques confirms the successful synthesis of SnO2 nanoparticles, g-C3N4 nanosheets, and 2D/0D g-C3N4/SnO2 S-scheme photocatalysts via hydrothermal and annealing processes. Besides, the visible-light response is confirmed by optical analysis. The S-scheme charge transfer was elucidated by Density-Functional Theory (DFT) calculation, trapping experiments, and electron spin resonance (ESR). We found that intrinsic oxygen vacancies of SnO2 nanoparticles and S-scheme charge transfer addressed the limitation of other heterojunction types. It is notable that compared pure SnO2 nanoparticles and g-C3N4, g-C3N4/SnO2 offered the best photocatalytic NO degradation and photostability under visible light with the removal of more than 40% NO at 500 ppb throughout the experiment. Benefiting from the unique structural features, the new generation architectural structure of S-scheme heterojunction exhibited potential photocatalytic activity and it would simultaneously act more promising for environmental treatment in the coming years.en_US
dc.identifier.citationEnvironmental Pollution. Vol.286, (2021)en_US
dc.identifier.doi10.1016/j.envpol.2021.117510en_US
dc.identifier.issn18736424en_US
dc.identifier.issn02697491en_US
dc.identifier.other2-s2.0-85107964419en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/77007
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107964419&origin=inwarden_US
dc.subjectEnvironmental Scienceen_US
dc.subjectPharmacology, Toxicology and Pharmaceuticsen_US
dc.titleEmerging 2D/0D g-C<inf>3</inf>N<inf>4</inf>/SnO<inf>2</inf> S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradationen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107964419&origin=inwarden_US

Files

Collections