Publication:
Variable Length Motif-Based Time Series Classification

dc.contributor.authorMyat Su Yinen_US
dc.contributor.authorSongsri Tangsripairojen_US
dc.contributor.authorBenjarath Pupacdien_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherChulabhorn Research Instituteen_US
dc.date.accessioned2018-11-09T02:11:15Z
dc.date.available2018-11-09T02:11:15Z
dc.date.issued2014-01-01en_US
dc.description.abstractVariable length time series motif discovery has attracted great interest in the community of time series data mining due to its importance in many applications such as medicine, motion analysis and robotics studies. In this work, a simple yet efficient suffix array based variable length motif discovery is proposed using a symbolic representation of time. As motif discovery is performed in discrete, low-dimensional representation, the number of motifs discovered and their frequencies are partially influenced by the number of symbols used to represent the motifs. We experimented with 4 electrocardiogram data sets from a benchmark repository to investigate the effect of alphabet size on the quantity and the quality of motifs from the time series classification perspective. The finding indicates that our approach can find variable length motifs and the discovered motifs can be used in classification of data where frequent patterns are inherently known to exist. © Springer International Publishing Switzerland 2014.en_US
dc.identifier.citationAdvances in Intelligent Systems and Computing. Vol.265 AISC, (2014), 73-82en_US
dc.identifier.doi10.1007/978-3-319-06538-0_8en_US
dc.identifier.issn21945357en_US
dc.identifier.other2-s2.0-84906883429en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/33747
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84906883429&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleVariable Length Motif-Based Time Series Classificationen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84906883429&origin=inwarden_US

Files

Collections