Publication:
Smartphone-Supported Malaria Diagnosis Based on Deep Learning

dc.contributor.authorFeng Yangen_US
dc.contributor.authorHang Yuen_US
dc.contributor.authorKamolrat Silamuten_US
dc.contributor.authorRichard J. Maudeen_US
dc.contributor.authorStefan Jaegeren_US
dc.contributor.authorSameer Antanien_US
dc.contributor.otherBeijing Jiaotong Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNational Library of Medicineen_US
dc.date.accessioned2020-01-27T08:24:12Z
dc.date.available2020-01-27T08:24:12Z
dc.date.issued2019-01-01en_US
dc.description.abstract© 2019, Springer Nature Switzerland AG. Malaria remains a major burden on global health, causing about half a million deaths every year. The objective of this work is to develop a fast, automated, smartphone-supported malaria diagnostic system. Our proposed system is the first system using both image processing and deep learning methods on a smartphone to detect malaria parasites in thick blood smears. The underlying detection algorithm is based on an iterative method for parasite candidate screening and a convolutional neural network model (CNN) for feature extraction and classification. The system runs on Android phones and can process blood smear images taken by the smartphone camera when attached to the eyepiece of a microscope. We tested the system on 50 normal patients and 150 abnormal patients. The accuracies of the system on patch-level and patient-level are 97% and 78%, respectively. AUC values on patch-level and patient-level are, respectively, 98% and 85%. Our system could aid in malaria diagnosis in resource-limited regions, without depending on extensive diagnostic expertise or expensive diagnostic equipment.en_US
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol.11861 LNCS, (2019), 73-80en_US
dc.identifier.doi10.1007/978-3-030-32692-0_9en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-85075683656en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50691
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075683656&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleSmartphone-Supported Malaria Diagnosis Based on Deep Learningen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075683656&origin=inwarden_US

Files

Collections