Publication:
Genomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawi

dc.contributor.authorJennifer E. Cornicken_US
dc.contributor.authorSimon R. Harrisen_US
dc.contributor.authorChristopher M. Parryen_US
dc.contributor.authorMichael J. Mooreen_US
dc.contributor.authorChikondi Jassien_US
dc.contributor.authorArox Kamng'onaen_US
dc.contributor.authorBenard Kulohomaen_US
dc.contributor.authorRobert S. Heydermanen_US
dc.contributor.authorStephen D. Bentleyen_US
dc.contributor.authorDean B. Everetten_US
dc.contributor.otherUniversity of Malawi College of Medicineen_US
dc.contributor.otherUniversity of Liverpoolen_US
dc.contributor.otherWellcome Trust Sanger Instituteen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherLiverpool School of Tropical Medicineen_US
dc.date.accessioned2018-11-09T02:41:15Z
dc.date.available2018-11-09T02:41:15Z
dc.date.issued2014-02-01en_US
dc.description.abstractObjectives: This study aimed to define the molecular basis of co-trimoxazole resistance in Malawian pneumococci under the dual selective pressure of widespread co-trimoxazole and sulfadoxine/pyrimethamine use. Methods: We measured the trimethoprim and sulfamethoxazole MICs and analysed folA and folP nucleotide and translated amino acid sequences for 143 pneumococci isolated from carriage and invasive disease in Malawi (2002-08). Results: Pneumococci were highly resistant to both trimethoprim and sulfamethoxazole (96%, 137/143). Sulfamethoxazole-resistant isolates showed a 3 or 6 bp insertion in the sulphonamide-binding site of folP. The trimethoprim-resistant isolates fell into three genotypic groups based on dihydrofolate reductase (encoded by folA) mutations: Ile-100-Leu (10%), the Ile-100-Leu substitution together with a residue 92 substitution (56%) and those with a novel uncharacterized resistance genotype (34%). The nucleotide sequence divergence and dN/dS of folA and folP remained stable from 2004 onwards. Conclusions: S. pneumoniae exhibit almost universal co-trimoxazole resistance in vitro and in silico that we believe is driven by extensive co-trimoxazole and sulfadoxine/pyrimethamine use. More than one-third of pneumococci employ a novel mechanism of co-trimoxazole resistance. Resistance has now reached a point of stabilizing evolution. The use of co-trimoxazole to prevent pneumococcal infection in HIV/AIDS patients in sub-Saharan Africa should be re-evaluated. © The Author 2013. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.en_US
dc.identifier.citationJournal of Antimicrobial Chemotherapy. Vol.69, No.2 (2014), 368-374en_US
dc.identifier.doi10.1093/jac/dkt384en_US
dc.identifier.issn14602091en_US
dc.identifier.issn03057453en_US
dc.identifier.other2-s2.0-84892471444en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/34310
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84892471444&origin=inwarden_US
dc.subjectMedicineen_US
dc.subjectPharmacology, Toxicology and Pharmaceuticsen_US
dc.titleGenomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawien_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84892471444&origin=inwarden_US

Files

Collections