Publication:
Water Level Detection from CCTV Cameras using a Deep Learning Approach

dc.contributor.authorPunyanuch Borwarnginnen_US
dc.contributor.authorJason H. Hagaen_US
dc.contributor.authorWorapan Kusakunniranen_US
dc.contributor.otherNational Institute of Advanced Industrial Science and Technologyen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2021-02-03T06:21:58Z
dc.date.available2021-02-03T06:21:58Z
dc.date.issued2020-11-16en_US
dc.description.abstract© 2020 IEEE. Natural disasters are a global problem that causes widespread losses and damage. A system to provide timely information is required in order to help reduce losses. Flooding is one of the major natural disasters that requires a monitoring and detection system. The traditional flood detection systems use remote sensors such as river water levels and rainfall to provide information to both disaster management professionals and the general public. There is an attempt to use visual information such as CCTV cameras to detect extreme flooding events; however, it requires human experts and consistent attention to monitor any changes. In this paper, we introduce an approach to the automatic river water level detection using deep learning to determine the water level from surveillance cameras. The model achieves 93% accuracy using a single camera location and 83% accuracy using multiple camera locations.en_US
dc.identifier.citationIEEE Region 10 Annual International Conference, Proceedings/TENCON. Vol.2020-November, (2020), 1283-1288en_US
dc.identifier.doi10.1109/TENCON50793.2020.9293865en_US
dc.identifier.issn21593450en_US
dc.identifier.issn21593442en_US
dc.identifier.other2-s2.0-85098942424en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/60906
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85098942424&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleWater Level Detection from CCTV Cameras using a Deep Learning Approachen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85098942424&origin=inwarden_US

Files

Collections