Publication: Effectiveness of Fluoroquinolones with Difluoropyridine Derivatives as R1 Groups on the Salmonella DNA Gyrase in the Presence and Absence of Plasmid-Encoded Quinolone Resistance Protein QnrB19
Issued Date
2021-10-01
Resource Type
ISSN
19318448
10766294
10766294
Other identifier(s)
2-s2.0-85117622728
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Microbial Drug Resistance. Vol.27, No.10 (2021), 1412-1419
Suggested Citation
Ruttana Pachanon, Kentaro Koide, Siriporn Kongsoi, Nami Ajima, Thoko Flav Kapalamula, Chie Nakajima, Orasa Suthienkul, Yasuhiko Suzuki Effectiveness of Fluoroquinolones with Difluoropyridine Derivatives as R1 Groups on the Salmonella DNA Gyrase in the Presence and Absence of Plasmid-Encoded Quinolone Resistance Protein QnrB19. Microbial Drug Resistance. Vol.27, No.10 (2021), 1412-1419. doi:10.1089/mdr.2020.0455 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/77210
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Effectiveness of Fluoroquinolones with Difluoropyridine Derivatives as R1 Groups on the Salmonella DNA Gyrase in the Presence and Absence of Plasmid-Encoded Quinolone Resistance Protein QnrB19
Other Contributor(s)
Abstract
Aims: WQ-3810 has strong inhibitory activity against Salmonella and other fluoroquinolone-resistant pathogens. The unique potentiality of this is attributed to 6-amino-3,5-difluoropyridine-2-yl at R1 group. The aim of this study was to examine WQ-3810 and its derivatives WQ-3334 and WQ-4065 as the new drug candidate for wild-type Salmonella and that carrying QnrB19. Materials and Methods: The half maximal inhibitory concentrations (IC50s) of WQ-3810, WQ-3334 (Br atom in place of methyl group at R8), and WQ-4065 (6-ethylamino-3,5-difluoropyridine-2-yl in place of 6-amino-3,5-difluoropyridine-2-yl group at R1) in the presence or absence of QnrB19 were assessed by in vitro DNA supercoiling assay utilizing recombinant DNA gyrase and QnrB19. Results: IC50s of WQ-3810, WQ-3334, and WQ-4065 against Salmonella DNA gyrase were 0.031 ± 0.003, 0.068 ± 0.016, and 0.72 ± 0.39 μg/mL, respectively, while QnrB19 increased IC50s of WQ-3810, WQ-3334, and WQ-4065 to 0.44 ± 0.05, 0.92 ± 0.34, and 9.16 ± 2.21 μg/mL, respectively. Conclusion: WQ-3810 and WQ-3334 showed stronger inhibitory activity against Salmonella Typhimurium DNA gyrases than WQ-4065 even in the presence of QnrB19. The results suggest that 6-amino-3,5-difluoropyridine-2-yl group at R1 is playing an important role and WQ-3810 and WQ-3334 to be good candidates for Salmonella carrying QnrB19.