Publication: On the boundedness of poles of generalized Padé approximants
dc.contributor.author | Nattapong Bosuwan | en_US |
dc.contributor.other | South Carolina Commission on Higher Education | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2020-01-27T09:12:07Z | |
dc.date.available | 2020-01-27T09:12:07Z | |
dc.date.issued | 2019-12-01 | en_US |
dc.description.abstract | © 2019, The Author(s). Given a function F holomorphic on a neighborhood of some compact subset of the complex plane, we prove that if the zeros of the denominators of generalized Padé approximants (orthogonal Padé approximants and Padé–Faber approximants) for some row sequence remain uniformly bounded, then either F is a polynomial or F has a singularity in the complex plane. This result extends the known one for classical Padé approximants. Its proof relies, on the one hand, on difference equations where their coefficients relate to the coefficients of denominators of these generalized Padé approximants and, on the other hand, on a curious property of complex numbers. | en_US |
dc.identifier.citation | Advances in Difference Equations. Vol.2019, No.1 (2019) | en_US |
dc.identifier.doi | 10.1186/s13662-019-2081-9 | en_US |
dc.identifier.issn | 16871847 | en_US |
dc.identifier.issn | 16871839 | en_US |
dc.identifier.other | 2-s2.0-85064336560 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/51192 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064336560&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | On the boundedness of poles of generalized Padé approximants | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064336560&origin=inward | en_US |