Publication:
On the boundedness of poles of generalized Padé approximants

dc.contributor.authorNattapong Bosuwanen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-01-27T09:12:07Z
dc.date.available2020-01-27T09:12:07Z
dc.date.issued2019-12-01en_US
dc.description.abstract© 2019, The Author(s). Given a function F holomorphic on a neighborhood of some compact subset of the complex plane, we prove that if the zeros of the denominators of generalized Padé approximants (orthogonal Padé approximants and Padé–Faber approximants) for some row sequence remain uniformly bounded, then either F is a polynomial or F has a singularity in the complex plane. This result extends the known one for classical Padé approximants. Its proof relies, on the one hand, on difference equations where their coefficients relate to the coefficients of denominators of these generalized Padé approximants and, on the other hand, on a curious property of complex numbers.en_US
dc.identifier.citationAdvances in Difference Equations. Vol.2019, No.1 (2019)en_US
dc.identifier.doi10.1186/s13662-019-2081-9en_US
dc.identifier.issn16871847en_US
dc.identifier.issn16871839en_US
dc.identifier.other2-s2.0-85064336560en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/51192
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064336560&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleOn the boundedness of poles of generalized Padé approximantsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064336560&origin=inwarden_US

Files

Collections