Publication:
Lanthanide contraction and magnetism in the heavy rare earth elements

dc.contributor.authorI. D. Hughesen_US
dc.contributor.authorM. Däneen_US
dc.contributor.authorA. Ernsten_US
dc.contributor.authorW. Hergerten_US
dc.contributor.authorM. Lüdersen_US
dc.contributor.authorJ. Poulteren_US
dc.contributor.authorJ. B. Stauntonen_US
dc.contributor.authorA. Svaneen_US
dc.contributor.authorZ. Szoteken_US
dc.contributor.authorW. M. Temmermanen_US
dc.contributor.otherThe University of Warwicken_US
dc.contributor.otherMartin-Universitat Halle-Wittenbergen_US
dc.contributor.otherMax Planck Institute of Microstructure Physicsen_US
dc.contributor.otherDaresbury Laboratoryen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherAarhus Universiteten_US
dc.date.accessioned2018-08-24T02:18:20Z
dc.date.available2018-08-24T02:18:20Z
dc.date.issued2007-04-05en_US
dc.description.abstractThe heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface - and hence the magnetic structure - for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii. ©2007 Nature Publishing Group.en_US
dc.identifier.citationNature. Vol.446, No.7136 (2007), 650-653en_US
dc.identifier.doi10.1038/nature05668en_US
dc.identifier.issn14764687en_US
dc.identifier.issn00280836en_US
dc.identifier.other2-s2.0-34247205420en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/25160
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34247205420&origin=inwarden_US
dc.subjectMultidisciplinaryen_US
dc.titleLanthanide contraction and magnetism in the heavy rare earth elementsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34247205420&origin=inwarden_US

Files

Collections