Publication: Skew Constacyclic Codes over Finite Fields and Finite Chain Rings
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Bac T. Nguyen | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.contributor.other | Kent State University | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | University of Economics and Business Administration | en_US |
dc.contributor.other | Chiang Mai University | en_US |
dc.date.accessioned | 2018-12-11T02:51:00Z | |
dc.date.accessioned | 2019-03-14T08:01:30Z | |
dc.date.available | 2018-12-11T02:51:00Z | |
dc.date.available | 2019-03-14T08:01:30Z | |
dc.date.issued | 2016-01-01 | en_US |
dc.description.abstract | © 2016 Hai Q. Dinh et al. This paper overviews the study of skew Θ-constacyclic codes over finite fields and finite commutative chain rings. The structure of skew Θ-constacyclic codes and their duals are provided. Among other results, we also consider the Euclidean and Hermitian dual codes of skew Θ-cyclic and skew Θ-negacyclic codes over finite chain rings in general and over Fpm+uFpm in particular. Moreover, general decoding procedure for decoding skew BCH codes with designed distance and an algorithm for decoding skew BCH codes are discussed. | en_US |
dc.identifier.citation | Mathematical Problems in Engineering. Vol.2016, (2016) | en_US |
dc.identifier.doi | 10.1155/2016/3965789 | en_US |
dc.identifier.issn | 15635147 | en_US |
dc.identifier.issn | 1024123X | en_US |
dc.identifier.other | 2-s2.0-84962691328 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/40625 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962691328&origin=inward | en_US |
dc.subject | Engineering | en_US |
dc.subject | Mathematics | en_US |
dc.title | Skew Constacyclic Codes over Finite Fields and Finite Chain Rings | en_US |
dc.type | Review | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962691328&origin=inward | en_US |