Publication:
Poster: Predicting components for issue reports using deep learning with information retrieval

dc.contributor.authorMorakot Choetkiertikulen_US
dc.contributor.authorHoa Khanh Damen_US
dc.contributor.authorTruyen Tranen_US
dc.contributor.authorTrang Phamen_US
dc.contributor.authorAditya Ghoseen_US
dc.contributor.otherDeakin Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversity of Wollongongen_US
dc.date.accessioned2019-08-23T10:57:14Z
dc.date.available2019-08-23T10:57:14Z
dc.date.issued2018-05-27en_US
dc.description.abstract© 2018 Authors. Assigning an issue to the correct component(s) is challenging, especially for large-scale projects which have are up to hundreds of components. We propose a prediction model which learns from historical issues reports and recommends the most relevant components for new issues. Our model uses the deep learning Long Short-Term Memory to automatically learns semantic features representing an issue report, and combines them with the traditional textual similarity features. An extensive evaluation on 142,025 issues from 11 large projects shows our approach outperforms alternative techniques with an average 60% improvement in predictive performance.en_US
dc.identifier.citationProceedings - International Conference on Software Engineering. (2018), 244-245en_US
dc.identifier.doi10.1145/3183440.3194952en_US
dc.identifier.issn02705257en_US
dc.identifier.other2-s2.0-85049674458en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/45635
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049674458&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titlePoster: Predicting components for issue reports using deep learning with information retrievalen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049674458&origin=inwarden_US

Files

Collections