Publication:
Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors

dc.contributor.authorApilak Worachartcheewanen_US
dc.contributor.authorPrasit Mandien_US
dc.contributor.authorVirapong Prachayasittikulen_US
dc.contributor.authorAlla P. Toropovaen_US
dc.contributor.authorAndrey A. Toropoven_US
dc.contributor.authorChanin Nantasenamaten_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherIstituto di Ricerche Farmacologiche Mario Negrien_US
dc.date.accessioned2018-11-09T02:03:08Z
dc.date.available2018-11-09T02:03:08Z
dc.date.issued2014-11-15en_US
dc.description.abstractAromatase inhibitors (AIs) represent a promising therapeutic class of anticancer agents against estrogen receptor-positive breast cancer. Bioactivity data on pIC50of 973 AIs were employed in the construction of quantitative structure-activity relationship (QSAR) models using COR relation And Logic (CORAL) software (http://www.insilico.eu/coral) in which molecular structures are represented by the simplified molecular input line entry system (SMILES) notation. Symbols inherently present in SMILES nomenclatures describe the presence of molecular fragments and therefore represent a facile approach that essentially eliminate the need to geometrically optimize molecular structures or the hassle of computing and selecting molecular descriptors. Predictive models were built in accordance with the OECD principles. Monte Carlo optimization of correlation weights of such molecular fragments provides pertinent information on structural constituents for correlating with the aromatase inhibitory activity. Results from different splits and data sub-sets indicated reliable models for predicting and interpreting the origins of aromatase inhibitory activities with the correlation coefficient (R2) and cross-validated correlation coefficient (Q2) in ranges of 0.6271-0.7083 and 0.6218-0.7024, respectively. Insights gained from constructed models could aid in the future design of aromatase inhibitors. © 2014 Elsevier B.V.en_US
dc.identifier.citationChemometrics and Intelligent Laboratory Systems. Vol.138, (2014), 120-126en_US
dc.identifier.doi10.1016/j.chemolab.2014.07.017en_US
dc.identifier.issn18733239en_US
dc.identifier.issn01697439en_US
dc.identifier.other2-s2.0-84906044145en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/33559
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84906044145&origin=inwarden_US
dc.subjectChemical Engineeringen_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.titleLarge-scale QSAR study of aromatase inhibitors using SMILES-based descriptorsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84906044145&origin=inwarden_US

Files

Collections