Publication:
Artificial intelligence to detect papilledema from ocular fundus photographs

dc.contributor.authorDan Mileaen_US
dc.contributor.authorRaymond P. Najjaren_US
dc.contributor.authorJiang Zhuboen_US
dc.contributor.authorDaniel Tingen_US
dc.contributor.authorCaroline Vasseneixen_US
dc.contributor.authorXinxing Xuen_US
dc.contributor.authorMasoud Aghsaei Farden_US
dc.contributor.authorPedro Fonsecaen_US
dc.contributor.authorKavin Vanikietien_US
dc.contributor.authorWolf A. Lagrèzeen_US
dc.contributor.authorChiara La Morgiaen_US
dc.contributor.authorCarol Y. Cheungen_US
dc.contributor.authorSteffen Hamannen_US
dc.contributor.authorChristophe Chiqueten_US
dc.contributor.authorNicolae Sandaen_US
dc.contributor.authorHui Yangen_US
dc.contributor.authorLuis J. Mejicoen_US
dc.contributor.authorMarie Bénédicte Rougieren_US
dc.contributor.authorRichard Khoen_US
dc.contributor.authorTran Thi Ha Chauen_US
dc.contributor.authorShweta Singhalen_US
dc.contributor.authorPhilippe Gohieren_US
dc.contributor.authorCatherine Clermont-Vignalen_US
dc.contributor.authorChing Yu Chengen_US
dc.contributor.authorJost B. Jonasen_US
dc.contributor.authorPatrick Yu-Wai-Manen_US
dc.contributor.authorClare L. Fraseren_US
dc.contributor.authorJohn J. Chenen_US
dc.contributor.authorSelvakumar Ambikaen_US
dc.contributor.authorNeil R. Milleren_US
dc.contributor.authorYong Liuen_US
dc.contributor.authorNancy J. Newmanen_US
dc.contributor.authorTien Y. Wongen_US
dc.contributor.authorValérie Biousseen_US
dc.contributor.otherFarabi Eye Hospitalen_US
dc.contributor.otherJohn van Geest Centre for Brain Repairen_US
dc.contributor.otherIstituto delle Scienze Neurologiche di Bolognaen_US
dc.contributor.otherUniversite Grenoble Alpesen_US
dc.contributor.otherDuke-NUS Medical School Singaporeen_US
dc.contributor.otherFondation Adolphe de Rothschilden_US
dc.contributor.otherUniversity of Cambridgeen_US
dc.contributor.otherKøbenhavns Universiteten_US
dc.contributor.otherAlma Mater Studiorum Università di Bolognaen_US
dc.contributor.otherYong Loo Lin School of Medicineen_US
dc.contributor.otherMedical Research Foundation, Chennaien_US
dc.contributor.otherUniversität Freiburg im Breisgauen_US
dc.contributor.otherSingapore Eye Research Instituteen_US
dc.contributor.otherUniversite Catholique de Lilleen_US
dc.contributor.otherSun Yat-Sen Universityen_US
dc.contributor.otherUniversidade de Coimbraen_US
dc.contributor.otherCentro Hospitalar e Universitário de Coimbraen_US
dc.contributor.otherState University of New York Upstate Medical Universityen_US
dc.contributor.otherUniversität Heidelbergen_US
dc.contributor.otherMoorfields Eye Hospital NHS Foundation Trusten_US
dc.contributor.otherFaculty of Medicine, Ramathibodi Hospital, Mahidol Universityen_US
dc.contributor.otherSave Sight Instituteen_US
dc.contributor.otherHôpitaux universitaires de Genèveen_US
dc.contributor.otherCHU Angersen_US
dc.contributor.otherSingapore National Eye Centreen_US
dc.contributor.otherCentre Hospitalier Universitaire de Grenobleen_US
dc.contributor.otherMayo Clinicen_US
dc.contributor.otherA-Star, Institute of High Performance Computingen_US
dc.contributor.otherGroupe Hospitalier Pellegrinen_US
dc.contributor.otherChinese University of Hong Kongen_US
dc.contributor.otherEmory University School of Medicineen_US
dc.contributor.otherJohns Hopkins School of Medicineen_US
dc.contributor.otherAmerican Eye Centeren_US
dc.date.accessioned2020-06-02T04:57:36Z
dc.date.available2020-06-02T04:57:36Z
dc.date.issued2020-04-30en_US
dc.description.abstractCopyright © 2020 Massachusetts Medical Society. BACKGROUND Nonophthalmologist physicians do not confidently perform direct ophthalmoscopy. The use of artificial intelligence to detect papilledema and other optic-disk abnormalities from fundus photographs has not been well studied. METHODS We trained, validated, and externally tested a deep-learning system to classify optic disks as being normal or having papilledema or other abnormalities from 15,846 retrospectively collected ocular fundus photographs that had been obtained with pharmacologic pupillary dilation and various digital cameras in persons from multiple ethnic populations. Of these photographs, 14,341 from 19 sites in 11 countries were used for training and validation, and 1505 photographs from 5 other sites were used for external testing. Performance at classifying the optic-disk appearance was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity, and specificity, as compared with a reference standard of clinical diagnoses by neuro-ophthalmologists. RESULTS The training and validation data sets from 6779 patients included 14,341 photographs: 9156 of normal disks, 2148 of disks with papilledema, and 3037 of disks with other abnormalities. The percentage classified as being normal ranged across sites from 9.8 to 100%; the percentage classified as having papilledema ranged across sites from zero to 59.5%. In the validation set, the system discriminated disks with papilledema from normal disks and disks with nonpapilledema abnormalities with an AUC of 0.99 (95% confidence interval [CI], 0.98 to 0.99) and normal from abnormal disks with an AUC of 0.99 (95% CI, 0.99 to 0.99). In the external-testing data set of 1505 photographs, the system had an AUC for the detection of papilledema of 0.96 (95% CI, 0.95 to 0.97), a sensitivity of 96.4% (95% CI, 93.9 to 98.3), and a specificity of 84.7% (95% CI, 82.3 to 87.1). CONCLUSIONS A deep-learning system using fundus photographs with pharmacologically dilated pupils differentiated among optic disks with papilledema, normal disks, and disks with nonpapilledema abnormalities.en_US
dc.identifier.citationNew England Journal of Medicine. Vol.382, No.18 (2020), 1687-1695en_US
dc.identifier.doi10.1056/NEJMoa1917130en_US
dc.identifier.issn15334406en_US
dc.identifier.issn00284793en_US
dc.identifier.other2-s2.0-85084305461en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/56251
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084305461&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleArtificial intelligence to detect papilledema from ocular fundus photographsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084305461&origin=inwarden_US

Files

Collections