Publication:
Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers

dc.contributor.authorJasmin S. Shaikhen_US
dc.contributor.authorNavajsharif S. Shaikhen_US
dc.contributor.authorSawanta S. Malien_US
dc.contributor.authorJyoti V. Patilen_US
dc.contributor.authorSonali A. Beknalkaren_US
dc.contributor.authorAkhilesh P. Patilen_US
dc.contributor.authorN. L. Tarwalen_US
dc.contributor.authorPongsakorn Kanjanaboosen_US
dc.contributor.authorChang Kook Hongen_US
dc.contributor.authorPramod S. Patilen_US
dc.contributor.otherShivaji Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherChonnam National Universityen_US
dc.date.accessioned2020-01-27T08:05:16Z
dc.date.available2020-01-27T08:05:16Z
dc.date.issued2019-11-08en_US
dc.description.abstract© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Quantum dot solar cells (QDSCs) are attractive technology for commercialization, owing to various advantages, such as cost effectiveness, and require relatively simple device fabrication processes. The properties of semiconductor quantum dots (QDs), such as band gap energy, optical absorption, and carrier transport, can be effectively tuned by modulating their size and shape. Two types of architectures of QDSCs have been developed: 1) photoelectric cells (PECs) fabricated from QDs sensitized on nanostructured TiO2, and 2) photovoltaic cells fabricated from a Schottky junction and heterojunction. Different types of semiconductor QDs, such as a secondary, ternary, quaternary, and perovskite semiconductors, are used for the advancement of QDSCs. The major challenge in QDSCs is the presence of defects in QDs, which lead to recombination reactions and thereby limit the overall performance of the device. To tackle this problem, several strategies, such as the implementation of a passivation layer over the QD layer and the preparation of core–shell structures, have been developed. This review covers aspects of QDSCs that are essential to understand for further improvement in this field and their commercialization.en_US
dc.identifier.citationChemSusChem. Vol.12, No.21 (2019), 4724-4753en_US
dc.identifier.doi10.1002/cssc.201901505en_US
dc.identifier.issn1864564Xen_US
dc.identifier.issn18645631en_US
dc.identifier.other2-s2.0-85074441986en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50499
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074441986&origin=inwarden_US
dc.subjectChemical Engineeringen_US
dc.subjectEnergyen_US
dc.subjectEnvironmental Scienceen_US
dc.subjectMaterials Scienceen_US
dc.titleQuantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layersen_US
dc.typeReviewen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074441986&origin=inwarden_US

Files

Collections