Publication:
Adaptive thresholding based on SOM technique for semi-automatic NPC image segmentation

dc.contributor.authorWeerayuth Chanapaien_US
dc.contributor.authorPanrasee Ritthipravaten_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-09-13T06:33:24Z
dc.date.available2018-09-13T06:33:24Z
dc.date.issued2009-12-01en_US
dc.description.abstractThis paper studies Self-Organizing Map (SOM) based adaptive thresholding technique for semi-automatic image segmentation. CT images of patients with nasopharyngeal carcinoma are considered in the study. The thresholds are determined from histogram of a topological map created from SOM method. With this proposed technique, initial tumor pixel must be manually selected. Pixels which are in the same threshold level are considered as tumor pixels. The experimental results showed that our proposed technique is effective for NPC image segmentation. In addition, it can properly handle tumor heterogeneity generally found in the NPC images. © 2009 IEEE.en_US
dc.identifier.citation8th International Conference on Machine Learning and Applications, ICMLA 2009. (2009), 504-508en_US
dc.identifier.doi10.1109/ICMLA.2009.135en_US
dc.identifier.other2-s2.0-77950841775en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/27456
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77950841775&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleAdaptive thresholding based on SOM technique for semi-automatic NPC image segmentationen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77950841775&origin=inwarden_US

Files

Collections