Publication:
Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum

dc.contributor.authorStanislaw J. Gabryszewskien_US
dc.contributor.authorCharin Modchangen_US
dc.contributor.authorLise Musseten_US
dc.contributor.authorThanat Chookajornen_US
dc.contributor.authorDavid A. Fidocken_US
dc.contributor.otherColumbia University Medical Centeren_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherInstitut Pasteur de la Guyaneen_US
dc.date.accessioned2018-12-11T01:58:35Z
dc.date.accessioned2019-03-14T08:04:24Z
dc.date.available2018-12-11T01:58:35Z
dc.date.available2019-03-14T08:04:24Z
dc.date.issued2016-06-02en_US
dc.description.abstract© 2016 The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum. A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field.en_US
dc.identifier.citationMolecular Biology and Evolution. Vol.33, No.6 (2016), 1554-1570en_US
dc.identifier.doi10.1093/molbev/msw037en_US
dc.identifier.issn15371719en_US
dc.identifier.issn07374038en_US
dc.identifier.other2-s2.0-84964581380en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43343
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964581380&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleCombinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparumen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964581380&origin=inwarden_US

Files

Collections