Publication: High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene
Issued Date
2010-06-01
Resource Type
ISSN
09608524
Other identifier(s)
2-s2.0-76749121331
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Bioresource Technology. Vol.101, No.11 (2010), 4081-4088
Suggested Citation
Songsri Kaewsuwan, Nantavan Bunyapraphatsara, David J. Cove, Ralph S. Quatrano, Pichit Chodok High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene. Bioresource Technology. Vol.101, No.11 (2010), 4081-4088. doi:10.1016/j.biortech.2009.12.138 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/28896
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene
Other Contributor(s)
Abstract
Adrenic acid (ADA), an ω-6 polyunsaturated fatty acid (PUFA), has attracted much interest due to its pharmaceutical potential. Exploiting the wealth of information currently available on in planta oil biosynthesis, and coupling this information with the tool of genetic engineering, it is now feasible to deliberately alter fatty acid biosynthetic pathways to generate unique oils in commodity crops. In this study, a Δ5-elongase gene from the algae Pavlova sp. related to the biosynthesis of C22PUFAs was targeted to enable production of ADA in the moss Physcomitrella patens. Heterologous expression of this gene was under the control of a tandemly duplicate 35S promoter. It was established that ADA (0.42 mg/l) was synthesized in P. patens from endogenous arachidonic acid (ARA) via the expressed Pavlova sp. Δ5-elongase in the moss. In an attempt to maximize ADA production, medium optimization was effected by the response surface methodology (RSM), resulting in a significant elevation of ADA (4.51 mg/l) production under optimum conditions. To the best of our knowledge, this is the first study describing the expression of a PUFA synthesizing enzyme in non-seed lower plant without supplying the exogenous fatty acid. © 2010 Elsevier Ltd. All rights reserved.