Publication:
Solute restriction reveals an essential role for clag3-associated channels in malaria parasite nutrient acquisition

dc.contributor.authorAjay D. Pillaien_US
dc.contributor.authorWang Nguitragoolen_US
dc.contributor.authorBrian Lykoen_US
dc.contributor.authorKeithlee Dolintaen_US
dc.contributor.authorMichelle M. Butleren_US
dc.contributor.authorSon T. Nguyenen_US
dc.contributor.authorNorton P. Peeten_US
dc.contributor.authorTerry L. Bowlinen_US
dc.contributor.authorSanjay A. Desaien_US
dc.contributor.otherNational Institute of Allergy and Infectious Diseasesen_US
dc.contributor.otherMicrobiotix, Inc.en_US
dc.contributor.otherWellcome Trust/DBTen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherTowson Universityen_US
dc.contributor.otherUniversity of Texas MD Anderson Cancer Centeren_US
dc.date.accessioned2018-06-11T04:32:41Z
dc.date.available2018-06-11T04:32:41Z
dc.date.issued2012-12-01en_US
dc.description.abstractThe plasmodial surface anion channel (PSAC) increases erythrocyte permeability to many solutes in malaria but has uncertain physiological significance. We used a PSAC inhibitor with different efficacies against channels from two Plasmodium falciparum parasite lines and found concordant effects on transport and in vitro parasite growth when external nutrient concentrations were reduced. Linkage analysis using this growth inhibition phenotype in the Dd2 X HB3 genetic cross mapped the clag3 genomic locus, consistent with a role for two clag3 genes in PSAC-mediated transport. Altered inhibitor efficacy, achieved through allelic exchange or expression switching between the clag3 genes, indicated that the inhibitor kills parasites through direct action on PSAC. In a parasite unable to undergo expression switching, the inhibitor selected for ectopic homologous recombination between the clag3 genes to increase the diversity of available channel isoforms. Broad-spectrum inhibitors, which presumably interact with conserved sites on the channel, also exhibited improved efficacy with nutrient restriction. These findings indicate that PSAC functions in nutrient acquisition for intracellular parasites. Although key questions regarding the channel and its biological role remain, antimalarial drug development targeting PSAC should be pursued.en_US
dc.identifier.citationMolecular Pharmacology. Vol.82, No.6 (2012), 1104-1114en_US
dc.identifier.doi10.1124/mol.112.081224en_US
dc.identifier.issn15210111en_US
dc.identifier.issn0026895Xen_US
dc.identifier.other2-s2.0-84869846744en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/13569
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84869846744&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectPharmacology, Toxicology and Pharmaceuticsen_US
dc.titleSolute restriction reveals an essential role for clag3-associated channels in malaria parasite nutrient acquisitionen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84869846744&origin=inwarden_US

Files

Collections