Publication:
Pseudocodeword-free criterion for codes with cycle-free Tanner graph

dc.contributor.authorWittawat Kositwattanarerken_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCommission on Higher Educationen_US
dc.date.accessioned2019-08-23T10:53:34Z
dc.date.available2019-08-23T10:53:34Z
dc.date.issued2018-12-01en_US
dc.description.abstract© 2018, Springer Science+Business Media, LLC, part of Springer Nature. Iterative decoding and linear programming decoding are guaranteed to converge to the maximum-likelihood codeword when the underlying Tanner graph is cycle-free. Therefore, cycles are usually seen as the culprit of low-density parity-check codes. In this paper, we argue in the context of graph cover pseudocodeword that, for a code that permits a cycle-free Tanner graph, cycles have no effect on error performance as long as they are a part of redundant rows. Specifically, we characterize all parity-check matrices that are pseudocodeword-free for such class of codes.en_US
dc.identifier.citationDesigns, Codes, and Cryptography. Vol.86, No.12 (2018), 2791-2805en_US
dc.identifier.doi10.1007/s10623-018-0476-3en_US
dc.identifier.issn15737586en_US
dc.identifier.issn09251022en_US
dc.identifier.other2-s2.0-85044380173en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/45539
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044380173&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titlePseudocodeword-free criterion for codes with cycle-free Tanner graphen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044380173&origin=inwarden_US

Files

Collections