Publication:
RSSI-based positioning for health care service using artificial neural network approach

dc.contributor.authorParinya Otarawannaen_US
dc.contributor.authorWarakorn Charoensuken_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-23T10:06:34Z
dc.date.available2018-11-23T10:06:34Z
dc.date.issued2015-01-01en_US
dc.description.abstract© 2014 IEEE. the fluctuation of received signal strength indicator emerges poor accuracy in healthcare location monitoring service. To enhance the capability of position classification, this paper represents positioning system based on ZigBee standard using artificial neural networks algorithm. Time-delay Multi-Layer Perceptron is proposed by using Levenberg-Marquardt optimization. For the result, the average error of four empirical experiments reaches to 7 centimeters with 1.5 square meters grid resolution. The reduction of grid scale in order to extend output resolution is also a limitation for RSSI-based positioning due to an uncertainly and ambiguity of RSSI vector.en_US
dc.identifier.citationBMEiCON 2014 - 7th Biomedical Engineering International Conference. (2015)en_US
dc.identifier.doi10.1109/BMEiCON.2014.7017419en_US
dc.identifier.other2-s2.0-84923010071en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/35913
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923010071&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleRSSI-based positioning for health care service using artificial neural network approachen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923010071&origin=inwarden_US

Files

Collections