Publication: Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission
Issued Date
2020-12-01
Resource Type
ISSN
20411723
Other identifier(s)
2-s2.0-85090317380
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Nature Communications. Vol.11, No.1 (2020)
Suggested Citation
Marie A. Bentsen, Dylan M. Rausch, Zaman Mirzadeh, Kenjiro Muta, Jarrad M. Scarlett, Jenny M. Brown, Vicente Herranz-Pérez, Arian F. Baquero, Jonatan Thompson, Kimberly M. Alonge, Chelsea L. Faber, Karl J. Kaiyala, Camdin Bennett, Charles Pyke, Cecilia Ratner, Kristoffer L. Egerod, Birgitte Holst, Thomas H. Meek, Burak Kutlu, Yu Zhang, Thomas Sparso, Kevin L. Grove, Gregory J. Morton, Birgitte R. Kornum, José Manuel García-Verdugo, Anna Secher, Rasmus Jorgensen, Michael W. Schwartz, Tune H. Pers Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nature Communications. Vol.11, No.1 (2020). doi:10.1038/s41467-020-17720-5 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/58938
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission
Author(s)
Marie A. Bentsen
Dylan M. Rausch
Zaman Mirzadeh
Kenjiro Muta
Jarrad M. Scarlett
Jenny M. Brown
Vicente Herranz-Pérez
Arian F. Baquero
Jonatan Thompson
Kimberly M. Alonge
Chelsea L. Faber
Karl J. Kaiyala
Camdin Bennett
Charles Pyke
Cecilia Ratner
Kristoffer L. Egerod
Birgitte Holst
Thomas H. Meek
Burak Kutlu
Yu Zhang
Thomas Sparso
Kevin L. Grove
Gregory J. Morton
Birgitte R. Kornum
José Manuel García-Verdugo
Anna Secher
Rasmus Jorgensen
Michael W. Schwartz
Tune H. Pers
Dylan M. Rausch
Zaman Mirzadeh
Kenjiro Muta
Jarrad M. Scarlett
Jenny M. Brown
Vicente Herranz-Pérez
Arian F. Baquero
Jonatan Thompson
Kimberly M. Alonge
Chelsea L. Faber
Karl J. Kaiyala
Camdin Bennett
Charles Pyke
Cecilia Ratner
Kristoffer L. Egerod
Birgitte Holst
Thomas H. Meek
Burak Kutlu
Yu Zhang
Thomas Sparso
Kevin L. Grove
Gregory J. Morton
Birgitte R. Kornum
José Manuel García-Verdugo
Anna Secher
Rasmus Jorgensen
Michael W. Schwartz
Tune H. Pers
Other Contributor(s)
Seattle Children's Hospital
Institut Cavanilles de Biodiversitat i Biologia Evolutiva
Københavns Universitet
Novo Nordisk Inc.
Faculty of Medicine, Ramathibodi Hospital, Mahidol University
University of Washington, Seattle
University of Copenhagen, Faculty of Health Sciences
University of Washington, Medicine
Novo Nordisk A/S
Universidad Jaume I
Barrow Neurological Institute
Cytoki Pharma
Institut Cavanilles de Biodiversitat i Biologia Evolutiva
Københavns Universitet
Novo Nordisk Inc.
Faculty of Medicine, Ramathibodi Hospital, Mahidol University
University of Washington, Seattle
University of Copenhagen, Faculty of Health Sciences
University of Washington, Medicine
Novo Nordisk A/S
Universidad Jaume I
Barrow Neurological Institute
Cytoki Pharma
Abstract
© 2020, The Author(s). In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.