Publication:
Gender identification from Thai speech signal using a neural network

dc.contributor.authorRong Phoophuangpairojen_US
dc.contributor.authorSukanya Phongsuphapen_US
dc.contributor.authorSupachai Tangwongsanen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-09-13T06:33:25Z
dc.date.available2018-09-13T06:33:25Z
dc.date.issued2009-12-01en_US
dc.description.abstractThis paper proposes a method for identifying a gender by using a Thai spoken syllable with the Average Magnitude Difference Function (AMDF) and a neural network (NN). The AMDF is applied to extracting pitch contour from a syllable. Then the NN uses the pitch contour to identify a gender. Experiments are carried out to evaluate the effects of Thai tones and syllable parts on the gender classification performance. By using a whole syllable, the average correct classification rate of 98.5% is achieved. While using parts of a syllable, the first half part gives the highest accuracy of 99.5%, followed by the middle and the last parts with the accuracies of 96.5% and 95.5%, respectively. The results indicate that the proposed method using pitch contour from any tones of the first half of a Thai spoken syllable or a whole Thai spoken syllable with the NN is efficient for identifying a gender. © 2009 Springer-Verlag Berlin Heidelberg.en_US
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol.5863 LNCS, No.PART 1 (2009), 676-684en_US
dc.identifier.doi10.1007/978-3-642-10677-4_77en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-76649104027en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/27461
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=76649104027&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleGender identification from Thai speech signal using a neural networken_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=76649104027&origin=inwarden_US

Files

Collections