Publication: Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production
Issued Date
2019-01-01
Resource Type
ISSN
15524469
15524450
15524450
Other identifier(s)
2-s2.0-85076479390
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Nature Chemical Biology. (2019)
Suggested Citation
Yi Liu, Quanli Liu, Anastasia Krivoruchko, Sakda Khoomrung, Jens Nielsen Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production. Nature Chemical Biology. (2019). doi:10.1038/s41589-019-0431-2 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/50386
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production
Abstract
© 2019, The Author(s), under exclusive licence to Springer Nature America, Inc. Phospholipids, the most abundant membrane lipid components, are crucial in maintaining membrane structures and homeostasis for biofunctions. As a structurally diverse and tightly regulated system involved in multiple organelles, phospholipid metabolism is complicated to manipulate. Thus, repurposing phospholipids for lipid-derived chemical production remains unexplored. Herein, we develop a Saccharomyces cerevisiae platform for de novo production of oleoylethanolamide, a phospholipid derivative with promising pharmacological applications in ameliorating lipid dysfunction and neurobehavioral symptoms. Through deregulation of phospholipid metabolism, screening of biosynthetic enzymes, engineering of subcellular trafficking and process optimization, we could produce oleoylethanolamide at a titer of 8,115.7 µg l−1 and a yield on glucose of 405.8 µg g−1. Our work provides a proof-of-concept study for systemically repurposing phospholipid metabolism for conversion towards value-added biological chemicals, and this multi-faceted framework may shed light on tailoring phospholipid metabolism in other microbial hosts.