Publication:
On Taylor-series expansion methods for the second kind integral equations

dc.contributor.authorPallop Huabsomboonen_US
dc.contributor.authorBoriboon Novaprateepen_US
dc.contributor.authorHideaki Kanekoen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherOld Dominion Universityen_US
dc.date.accessioned2018-09-24T09:12:39Z
dc.date.available2018-09-24T09:12:39Z
dc.date.issued2010-07-01en_US
dc.description.abstractIn this paper, we comment on the recent papers by Yuhe Ren et al. (1999) [1] and Maleknejad et al. (2006) [7] concerning the use of the Taylor series to approximate a solution of the Fredholm integral equation of the second kind as well as a solution of a system of Fredholm equations. The technique presented in Yuhe Ren et al. (1999) [1] takes advantage of a rapidly decaying convolution kernel k (| s - t |) as | s - t | increases. However, it does not apply to equations having other types of kernels. We present in this paper a more general Taylor expansion method which can be applied to approximate a solution of the Fredholm equation having a smooth kernel. Also, it is shown that when the new method is applied to the Fredholm equation with a rapidly decaying kernel, it provides more accurate results than the method in Yuhe Ren et al. (1999) [1]. We also discuss an application of the new Taylor-series method to a system of Fredholm integral equations of the second kind. © 2010 Elsevier B.V. All rights reserved.en_US
dc.identifier.citationJournal of Computational and Applied Mathematics. Vol.234, No.5 (2010), 1466-1472en_US
dc.identifier.doi10.1016/j.cam.2010.02.023en_US
dc.identifier.issn03770427en_US
dc.identifier.other2-s2.0-77950790792en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/29329
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77950790792&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleOn Taylor-series expansion methods for the second kind integral equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77950790792&origin=inwarden_US

Files

Collections