Publication:
Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees

dc.contributor.authorIckwon Choien_US
dc.contributor.authorAmy W. Chungen_US
dc.contributor.authorTodd J. Suscovichen_US
dc.contributor.authorSupachai Rerks-Ngarmen_US
dc.contributor.authorPunnee Pitisuttithumen_US
dc.contributor.authorSorachai Nitayaphanen_US
dc.contributor.authorJaranit Kaewkungwalen_US
dc.contributor.authorRobert J. O'Connellen_US
dc.contributor.authorDonald Francisen_US
dc.contributor.authorMerlin L. Robben_US
dc.contributor.authorNelson L. Michaelen_US
dc.contributor.authorJerome H. Kimen_US
dc.contributor.authorGalit Alteren_US
dc.contributor.authorMargaret E. Ackermanen_US
dc.contributor.authorChris Bailey-Kelloggen_US
dc.contributor.otherDartmouth Collegeen_US
dc.contributor.otherMassachusetts General Hospitalen_US
dc.contributor.otherThailand Ministry of Public Healthen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherArmed Forces Research Institute of Medical Sciences, Thailanden_US
dc.contributor.otherGlobal Solutions for Infectious Diseasesen_US
dc.contributor.otherWalter Reed Army Institute of Researchen_US
dc.contributor.otherHenry Jackson Foundationen_US
dc.contributor.otherThayer School of Engineering at Dartmouthen_US
dc.date.accessioned2018-11-23T09:35:12Z
dc.date.available2018-11-23T09:35:12Z
dc.date.issued2015-01-01en_US
dc.description.abstractThe adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.en_US
dc.identifier.citationPLoS Computational Biology. Vol.11, No.4 (2015)en_US
dc.identifier.doi10.1371/journal.pcbi.1004185en_US
dc.identifier.issn15537358en_US
dc.identifier.issn1553734Xen_US
dc.identifier.other2-s2.0-84929485998en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/35297
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929485998&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectComputer Scienceen_US
dc.subjectEnvironmental Scienceen_US
dc.subjectMathematicsen_US
dc.titleMachine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccineesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929485998&origin=inwarden_US

Files

Collections