Publication:
Evaluating the power efficiency of deep learning inference on embedded GPU systems

dc.contributor.authorKanokwan Rungsuptaweekoonen_US
dc.contributor.authorVasaka Visoottivisethen_US
dc.contributor.authorRyousei Takanoen_US
dc.contributor.otherNational Institute of Advanced Industrial Science and Technologyen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2019-08-23T10:58:08Z
dc.date.available2019-08-23T10:58:08Z
dc.date.issued2018-01-12en_US
dc.description.abstract© 2017 IEEE. Deep learning inference on embedded systems requires not only high throughput but also low power consumption. To address this challenge, this paper evaluates the power efficiency of image recognition with YOLO, a real-time object detection algorithm, on the latest NVIDIA embedded GPU systems: Jetson TX1 and TX2. For this evaluation, we deployed the Low-Power Image Recognition Challenge (LPIRC) system and integrated YOLO, a power meter, and target hardware into the system. The experimental results show that Jetson TX2 with Max-N mode has the highest throughput; Jetson TX2 with Max-Q mode has the highest power efficiency. These findings indicate it is possible to adjust the trade-off relationship of throughput and power efficiency in Jetson TX2. Therefore, Jetson TX2 has advantages for image recognition on embedded systems more than Jetson TX1 and a PC server with NVIDIA Tesla P40.en_US
dc.identifier.citationProceeding of 2017 2nd International Conference on Information Technology, INCIT 2017. Vol.2018-January, (2018), 1-5en_US
dc.identifier.doi10.1109/INCIT.2017.8257866en_US
dc.identifier.other2-s2.0-85049446409en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/45658
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049446409&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleEvaluating the power efficiency of deep learning inference on embedded GPU systemsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049446409&origin=inwarden_US

Files

Collections