Publication:
Catalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerization

dc.contributor.authorParham Asgarien_US
dc.contributor.authorYuanda Huaen_US
dc.contributor.authorApparao Bokkaen_US
dc.contributor.authorChanachon Thiamsirien_US
dc.contributor.authorWatcharapon Prasitwatcharakornen_US
dc.contributor.authorAshif Karedathen_US
dc.contributor.authorXin Chenen_US
dc.contributor.authorSinjinee Sardaren_US
dc.contributor.authorKyungsuk Yumen_US
dc.contributor.authorGyu Leemen_US
dc.contributor.authorBrad S. Pierceen_US
dc.contributor.authorKwangho Namen_US
dc.contributor.authorJiali Gaoen_US
dc.contributor.authorJunha Jeonen_US
dc.contributor.otherUmeå Universiteten_US
dc.contributor.otherUniversity of Minnesota Twin Citiesen_US
dc.contributor.otherState University of New York College of Environmental Science and Forestryen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherJilin Universityen_US
dc.contributor.otherUniversity of Texas at Arlingtonen_US
dc.date.accessioned2020-01-27T07:50:30Z
dc.date.available2020-01-27T07:50:30Z
dc.date.issued2019-02-01en_US
dc.description.abstract© 2019, The Author(s), under exclusive licence to Springer Nature Limited. Because of the importance of hydrogen atom transfer (HAT) in biology and chemistry, there is increased interest in new strategies to perform HAT in a sustainable manner. Here, we describe a sustainable, net redox-neutral HAT process involving hydrosilanes and alkali metal Lewis base catalysts—eliminating the use of transition metal catalysts—and report an associated mechanism concerning Lewis base-catalysed, complexation-induced HAT. The catalytic Lewis base-catalysed, complexation-induced HAT is capable of accessing both branch-specific hydrosilylation and polymerization of vinylarenes in a highly selective fashion, depending on the Lewis base catalyst used. In this process, the Earth-abundant, alkali metal Lewis base catalyst plays a dual role. It first serves as a HAT initiator and subsequently functions as a silyl radical stabilizing group, which is critical to highly selective cross-radical coupling. An electron paramagnetic resonance study identified a potassiated paramagnetic species, and multistate density functional theory revealed a high HAT character, yet multiconfigurational nature in the transition state of the reaction.en_US
dc.identifier.citationNature Catalysis. Vol.2, No.2 (2019), 164-173en_US
dc.identifier.doi10.1038/s41929-018-0217-zen_US
dc.identifier.issn25201158en_US
dc.identifier.other2-s2.0-85060796651en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50274
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060796651&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemical Engineeringen_US
dc.titleCatalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerizationen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060796651&origin=inwarden_US

Files

Collections