Publication:
Automated detection and quantification of reverse triggering effort under mechanical ventilation

dc.contributor.authorTài Phamen_US
dc.contributor.authorJaume Montanyaen_US
dc.contributor.authorIrene Teliasen_US
dc.contributor.authorThomas Pirainoen_US
dc.contributor.authorRudys Magransen_US
dc.contributor.authorRémi Coudroyen_US
dc.contributor.authorL. Felipe Damianien_US
dc.contributor.authorRicard Mellado Artigasen_US
dc.contributor.authorMatías Madornoen_US
dc.contributor.authorLluis Blanchen_US
dc.contributor.authorLaurent Brocharden_US
dc.contributor.authorTài Phamen_US
dc.contributor.authorJaume Montanyaen_US
dc.contributor.authorRémi Coudroyen_US
dc.contributor.authorL. Felipe Damianien_US
dc.contributor.authorLluis Blanchen_US
dc.contributor.authorLaurent Brocharden_US
dc.contributor.authorCesar Santisen_US
dc.contributor.authorTommaso Maurien_US
dc.contributor.authorElena Spinellien_US
dc.contributor.authorGiacomo Grassellien_US
dc.contributor.authorSavino Spadaroen_US
dc.contributor.authorCarlo Alberto Voltaen_US
dc.contributor.authorFrancesco Mojolien_US
dc.contributor.authorDimitris Georgopoulosen_US
dc.contributor.authorEumorfia Kondilien_US
dc.contributor.authorStella Soundoulounakien_US
dc.contributor.authorTobias Becheren_US
dc.contributor.authorNorbert Weileren_US
dc.contributor.authorDirk Schaedleren_US
dc.contributor.authorOriol Rocaen_US
dc.contributor.authorManel Santafeen_US
dc.contributor.authorJordi Manceboen_US
dc.contributor.authorLeo Heunksen_US
dc.contributor.authorHeder de Vriesen_US
dc.contributor.authorChang Wen Chenen_US
dc.contributor.authorJian Xin Zhouen_US
dc.contributor.authorGuang Qiang Chenen_US
dc.contributor.authorNuttapol Rittayamaien_US
dc.contributor.authorNorberto Tiribellien_US
dc.contributor.authorSebastian Fredesen_US
dc.contributor.authorCarlos Ferrando Ortoláen_US
dc.contributor.authorFrançois Beloncleen_US
dc.contributor.authorAlain Mercaten_US
dc.contributor.authorJ. M. Arnalen_US
dc.contributor.authorJ. L. Diehlen_US
dc.contributor.authorA. Demouleen_US
dc.contributor.authorM. Dresen_US
dc.contributor.authorS. Jochmansen_US
dc.contributor.authorJ. Chellyen_US
dc.contributor.authorNicolas Terzien_US
dc.contributor.authorClaude Guérinen_US
dc.contributor.authorE. Baedorf Kassisen_US
dc.contributor.authorJ. Beitleren_US
dc.contributor.authorDavide Chiumelloen_US
dc.contributor.authorErica Ferrari Luca Bolgiaghien_US
dc.contributor.authorV. Fanellien_US
dc.contributor.authorJ. E. Alphonsineen_US
dc.contributor.authorArnaud W. Thilleen_US
dc.contributor.authorLaurent Papazianen_US
dc.contributor.otherInstitut d’Investigació i Innovació Parc Taulí (I3PT)en_US
dc.contributor.otherSiriraj Hospitalen_US
dc.contributor.otherVall d'Hebron Institut de Recercaen_US
dc.contributor.otherUniversite Paris-Saclayen_US
dc.contributor.otherCentro de Investigación Biomédica en Red de Enfermedades Respiratoriasen_US
dc.contributor.otherKeenan Research Centre for Biomedical Scienceen_US
dc.contributor.otherIRCCS Fondazione Mondinoen_US
dc.contributor.otherSanatorio de la Trinidaden_US
dc.contributor.otherBeijing Tiantan Hospital, Capital Medical Universityen_US
dc.contributor.otherChurruca Visca Hospitalen_US
dc.contributor.otherUniversite de Poitiersen_US
dc.contributor.otherMcMaster Universityen_US
dc.contributor.otherUniversità degli Studi di Milanoen_US
dc.contributor.otherHospital Clinic Barcelonaen_US
dc.contributor.otherPontificia Universidad Católica de Chileen_US
dc.contributor.otherUniversity of Ferraraen_US
dc.contributor.otherAP-HP Assistance Publique - Hopitaux de Parisen_US
dc.contributor.otherCentre Hospitalier Universitaire de Poitiersen_US
dc.contributor.otherInstituto Tecnológico de Buenos Aires (ITBA)en_US
dc.contributor.otherSaint Michael's Hospital University of Torontoen_US
dc.contributor.otherUniversity of Torontoen_US
dc.contributor.otherHôpital Universitaire Pitié Salpêtrièreen_US
dc.contributor.otherUniversity Health Network University of Torontoen_US
dc.contributor.otherHôpital Nord AP-HMen_US
dc.contributor.otherUniversità degli Studi di Torinoen_US
dc.contributor.otherVagelos College of Physicians and Surgeonsen_US
dc.contributor.otherHeraklion University Hospitalen_US
dc.contributor.otherHospital de La Santa Creu I Sant Pauen_US
dc.contributor.otherCHU Angersen_US
dc.contributor.otherCentre Hospitalier Universitaire de Grenobleen_US
dc.contributor.otherUniversitätsklinikum Schleswig-Holstein Campus Kielen_US
dc.contributor.otherNational Cheng Kung University College of Medicineen_US
dc.contributor.otherHarvard Medical Schoolen_US
dc.contributor.otherAmsterdam UMCen_US
dc.contributor.otherSinai Health Systemen_US
dc.contributor.otherHôpital Sainte Musseen_US
dc.contributor.otherBetterCare S.Len_US
dc.contributor.otherCentre Hospitalier de Melunen_US
dc.date.accessioned2022-08-04T09:05:30Z
dc.date.available2022-08-04T09:05:30Z
dc.date.issued2021-12-01en_US
dc.description.abstractBackground: Reverse triggering (RT) is a dyssynchrony defined by a respiratory muscle contraction following a passive mechanical insufflation. It is potentially harmful for the lung and the diaphragm, but its detection is challenging. Magnitude of effort generated by RT is currently unknown. Our objective was to validate supervised methods for automatic detection of RT using only airway pressure (Paw) and flow. A secondary objective was to describe the magnitude of the efforts generated during RT. Methods: We developed algorithms for detection of RT using Paw and flow waveforms. Experts having Paw, flow and esophageal pressure (Pes) assessed automatic detection accuracy by comparison against visual assessment. Muscular pressure (Pmus) was measured from Pes during RT, triggered breaths and ineffective efforts. Results: Tracings from 20 hypoxemic patients were used (mean age 65 ± 12 years, 65% male, ICU survival 75%). RT was present in 24% of the breaths ranging from 0 (patients paralyzed or in pressure support ventilation) to 93.3%. Automatic detection accuracy was 95.5%: sensitivity 83.1%, specificity 99.4%, positive predictive value 97.6%, negative predictive value 95.0% and kappa index of 0.87. Pmus of RT ranged from 1.3 to 36.8 cmH20, with a median of 8.7 cmH20. RT with breath stacking had the highest levels of Pmus, and RTs with no breath stacking were of similar magnitude than pressure support breaths. Conclusion: An automated detection tool using airway pressure and flow can diagnose reverse triggering with excellent accuracy. RT generates a median Pmus of 9 cmH2O with important variability between and within patients. Trial registration: BEARDS, NCT03447288.[Figure not available: see fulltext.]en_US
dc.identifier.citationCritical Care. Vol.25, No.1 (2021)en_US
dc.identifier.doi10.1186/s13054-020-03387-3en_US
dc.identifier.issn1466609Xen_US
dc.identifier.issn13648535en_US
dc.identifier.other2-s2.0-85101431466en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/77628
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101431466&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleAutomated detection and quantification of reverse triggering effort under mechanical ventilationen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101431466&origin=inwarden_US

Files

Collections