Publication:
Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia

dc.contributor.authorDominic Wiredu Boakyeen_US
dc.contributor.authorPattana Jaroenlaken_US
dc.contributor.authorAnuphap Prachumwaten_US
dc.contributor.authorTom A. Williamsen_US
dc.contributor.authorKelly S. Batemanen_US
dc.contributor.authorOrnchuma Itsathitphaisarnen_US
dc.contributor.authorKallaya Sritunyalucksanaen_US
dc.contributor.authorKonrad H. Paszkiewiczen_US
dc.contributor.authorKaren A. Mooreen_US
dc.contributor.authorGrant D. Stentiforden_US
dc.contributor.authorBryony A.P. Williamsen_US
dc.contributor.otherUniversity of Exeteren_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherThailand National Center for Genetic Engineering and Biotechnologyen_US
dc.contributor.otherUniversity of Bristolen_US
dc.contributor.otherEuropean Unionen_US
dc.date.accessioned2018-12-21T06:30:45Z
dc.date.accessioned2019-03-14T08:02:27Z
dc.date.available2018-12-21T06:30:45Z
dc.date.available2019-03-14T08:02:27Z
dc.date.issued2017-05-01en_US
dc.description.abstract© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd Glycolysis and oxidative phosphorylation are the fundamental pathways of ATP generation in eukaryotes. Yet in microsporidia, endoparasitic fungi living at the limits of cellular streamlining, oxidative phosphorylation has been lost: energy is obtained directly from the host or, during the dispersive spore stage, via glycolysis. It was therefore surprising when the first sequenced genome from the Enterocytozoonidae – a major family of human and animal-infecting microsporidians – appeared to have lost genes for glycolysis. Here, we sequence and analyse genomes from additional members of this family, shedding new light on their unusual biology. Our survey includes the genome of Enterocytozoon hepatopenaei, a major aquacultural parasite currently causing substantial economic losses in shrimp farming, and Enterospora canceri, a pathogen that lives exclusively inside epithelial cell nuclei of its crab host. Our analysis of gene content across the clade suggests that Ent. canceri's adaptation to intranuclear life is underpinned by the expansion of transporter families. We demonstrate that this entire lineage of pathogens has lost glycolysis and, uniquely amongst eukaryotes, lacks any obvious intrinsic means of generating energy. Our study provides an important resource for the investigation of host-pathogen interactions and reductive evolution in one of the most medically and economically important microsporidian lineages.en_US
dc.identifier.citationEnvironmental Microbiology. Vol.19, No.5 (2017), 2077-2089en_US
dc.identifier.doi10.1111/1462-2920.13734en_US
dc.identifier.issn14622920en_US
dc.identifier.issn14622912en_US
dc.identifier.other2-s2.0-85017647000en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/41486
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85017647000&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectImmunology and Microbiologyen_US
dc.titleDecay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidiaen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85017647000&origin=inwarden_US

Files

Collections