Publication:
Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity

dc.contributor.authorThomas J. Richneren_US
dc.contributor.authorSanitta Thongpangen_US
dc.contributor.authorSarah K. Brodnicken_US
dc.contributor.authorAmelia A. Schendelen_US
dc.contributor.authorRyan W. Falken_US
dc.contributor.authorLisa A. Krugner-Higbyen_US
dc.contributor.authorRamin Pashaieen_US
dc.contributor.authorJustin C. Williamsen_US
dc.contributor.otherUniversity of Wisconsin Madisonen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversity of Wisconsin Milwaukeeen_US
dc.contributor.otherUniversity of Wisconsin Madison, School of Veterinary Medicineen_US
dc.date.accessioned2018-11-09T02:14:00Z
dc.date.available2018-11-09T02:14:00Z
dc.date.issued2014-02-01en_US
dc.description.abstractObjective. Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complementary methods to simultaneously modulate cortical activity while recording are needed. Approach. We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2. We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main results. Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance. Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses. © 2014 IOP Publishing Ltd.en_US
dc.identifier.citationJournal of Neural Engineering. Vol.11, No.1 (2014)en_US
dc.identifier.doi10.1088/1741-2560/11/1/016010en_US
dc.identifier.issn17412552en_US
dc.identifier.issn17412560en_US
dc.identifier.other2-s2.0-84892715139en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/33828
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84892715139&origin=inwarden_US
dc.subjectEngineeringen_US
dc.subjectNeuroscienceen_US
dc.titleOptogenetic micro-electrocorticography for modulating and localizing cerebral cortex activityen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84892715139&origin=inwarden_US

Files

Collections