Publication:
Stock market movement prediction using LDA-online learning model

dc.contributor.authorTanapon Tantisripreechaen_US
dc.contributor.authorNuanwan Soonthomphisajen_US
dc.contributor.otherKasetsart Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2019-08-23T10:55:42Z
dc.date.available2019-08-23T10:55:42Z
dc.date.issued2018-08-20en_US
dc.description.abstract© 2018 IEEE. In this paper, an online learning method namely LDA-Online algorithm is proposed to predict the stock movement. The feature set which are the opening price, the closing price, the highest price and the lowest price are applied to fit the Linear Discriminant Analysis (LDA). Experiments on the four well known NASDAQ stocks (APPLE, FACBOOK GOOGLE, and AMAZON) show that our model provide the best performance in stock prediction. We compare LDA-online to ANN, KNN and Decision Tree in both Batch and Online learning scheme. We found that LDA-Online provided the best performance. The highest performances measured on GOOGLE, AMAZON, APPLE FACEBOOK stocks are 97.81%, 97.64%, 95.58% and 95.18% respectively.en_US
dc.identifier.citationProceedings - 2018 IEEE/ACIS 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2018. (2018), 135-139en_US
dc.identifier.doi10.1109/SNPD.2018.8441038en_US
dc.identifier.other2-s2.0-85053526710en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/45600
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85053526710&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.subjectMathematicsen_US
dc.titleStock market movement prediction using LDA-online learning modelen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85053526710&origin=inwarden_US

Files

Collections