Publication:
Pup-fuse: Prediction of protein pupylation sites by integrating multiple sequence representations

dc.contributor.authorFirda Nurul Auliahen_US
dc.contributor.authorAndi Nur Nilamyanien_US
dc.contributor.authorWatshara Shoombuatongen_US
dc.contributor.authorMd Ashad Alamen_US
dc.contributor.authorMd Mehedi Hasanen_US
dc.contributor.authorHiroyuki Kurataen_US
dc.contributor.otherKyushu Institute of Technologyen_US
dc.contributor.otherTulane Universityen_US
dc.contributor.otherJapan Society for the Promotion of Scienceen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2022-08-04T08:12:06Z
dc.date.available2022-08-04T08:12:06Z
dc.date.issued2021-02-02en_US
dc.description.abstractPupylation is a type of reversible post-translational modification of proteins, which plays a key role in the cellular function of microbial organisms. Several proteomics methods have been developed for the prediction and analysis of pupylated proteins and pupylation sites. However, the traditional experimental methods are laborious and time-consuming. Hence, computational algorithms are highly needed that can predict potential pupylation sites using sequence features. In this research, a new prediction model, PUP-Fuse, has been developed for pupylation site prediction by integrating multiple sequence representations. Meanwhile, we explored the five types of feature encoding approaches and three machine learning (ML) algorithms. In the final model, we integrated the successive ML scores using a linear regression model. The PUP-Fuse achieved a Mathew correlation value of 0.768 by a 10-fold cross-validation test. It also outperformed existing predictors in an independent test. The web server of the PUP-Fuse with curated datasets is freely available.en_US
dc.identifier.citationInternational Journal of Molecular Sciences. Vol.22, No.4 (2021), 1-12en_US
dc.identifier.doi10.3390/ijms22042120en_US
dc.identifier.issn14220067en_US
dc.identifier.issn16616596en_US
dc.identifier.other2-s2.0-85100933219en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76284
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100933219&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemical Engineeringen_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.titlePup-fuse: Prediction of protein pupylation sites by integrating multiple sequence representationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100933219&origin=inwarden_US

Files

Collections