Publication:
Diagnose flat foot from foot print image based on neural network

dc.contributor.authorWanlop Aruntammanaken_US
dc.contributor.authorYuttapong Aunhathaweesupen_US
dc.contributor.authorWaranyu Wongsereeen_US
dc.contributor.authorAdisorn Leelasantithamen_US
dc.contributor.authorSupaporn Kiattisinen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-10-19T04:54:28Z
dc.date.available2018-10-19T04:54:28Z
dc.date.issued2013-12-01en_US
dc.description.abstractNormally, there have been many methods to diagnosis of flat foot. Each method is different to use indicators e.g. Staheli arch index, Clark's angle and Chippaux-Smirak index. However, the results from such indicators are still varied in each method. Therefore, this paper proposes a classification of the flat foot by combining of multiple indicators with neural network process. It can improve an accuracy of classification more than the use of only one indicator. There are 132 images of footprints (left and right foot) consisting of normal foot or flat foot. The experimental results using a combination of indicators show that an accuracy of the result is up to 93% more than the single index i.e. Staheli arch index 43%, Clark's angle 68%, Chippaux-Smirak index 80%. It can make more precisely diagnose of flat foot. © 2013 IEEE.en_US
dc.identifier.citationBMEiCON 2013 - 6th Biomedical Engineering International Conference. (2013)en_US
dc.identifier.doi10.1109/BMEiCon.2013.6687684en_US
dc.identifier.other2-s2.0-84893262959en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/31714
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893262959&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleDiagnose flat foot from foot print image based on neural networken_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893262959&origin=inwarden_US

Files

Collections