Publication: A combined cellulosic and starchy ethanol and biomethane production with stillage recycle and respective cost analysis
Issued Date
2020-09-01
Resource Type
ISSN
18790682
09601481
09601481
Other identifier(s)
2-s2.0-85085024758
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Renewable Energy. Vol.157, (2020), 444-455
Suggested Citation
Punika Puengprasert, Tanida Chalobol, Nusara Sinbuathong, Penjit Srinophakhun, Anusith Thanapimmetha, Chen Guang Liu, Xin Qing Zhao, Chularat Sakdaronnarong A combined cellulosic and starchy ethanol and biomethane production with stillage recycle and respective cost analysis. Renewable Energy. Vol.157, (2020), 444-455. doi:10.1016/j.renene.2020.05.022 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/56172
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
A combined cellulosic and starchy ethanol and biomethane production with stillage recycle and respective cost analysis
Other Contributor(s)
Abstract
© 2020 Elsevier Ltd To minimize waste generation in ethanol production from starchy and cellulosic feedstocks, the feasibility of stillage recycle to fermentation process was studied. For sugarcane bagasse (SCB) and palm empty fruit bunch (EFB), optimal hot-compressed water (HCW) pretreatment and enzyme hydrolysis (10% wt) gave the highest total reducing sugar (TRS) yields of 64.2% and 67.3%, respectively. Ethanol fermentation of SCB, EFB and fresh cassava by Saccharomyces cerevisiae TISTR5606 gave the highest yields of 0.31 g g−1, 0.40 g g−1, and 0.31 g g−1 TRS, respectively. For recycling of SCB and EFB stillage, a slight decline of ethanol yield was found while ethanol yield of cassava significantly increased from 60.8% to 89.9%. The ethanol yields from the 2nd recycle of cassava was still 10% higher than no recycle. Addition of 10%–20% v/v black liquor from lignocellulosic HCW pretreatment into anaerobic digestion system noticeably enhanced the chemical oxygen demand removal and methane production. Analysis of variable operating cost showed that stillage recycles for 20% for fresh cassava and 10% for SCB is cost-effective process for ethanol production.