Publication:
Creating Flavin Reductase Variants with Thermostable and Solvent-Tolerant Properties by Rational-Design Engineering

dc.contributor.authorSomchart Maenpuenen_US
dc.contributor.authorVinutsada Pongsupasaen_US
dc.contributor.authorWiranee Pensooken_US
dc.contributor.authorPiyanuch Anuwanen_US
dc.contributor.authorNapatsorn Kraivisitkulen_US
dc.contributor.authorChatchadaporn Pinthongen_US
dc.contributor.authorJittima Phonbupphaen_US
dc.contributor.authorThikumporn Luanloeten_US
dc.contributor.authorHein J. Wijmaen_US
dc.contributor.authorMarco W. Fraaijeen_US
dc.contributor.authorNarin Lawanen_US
dc.contributor.authorPimchai Chaiyenen_US
dc.contributor.authorThanyaporn Wongnateen_US
dc.contributor.otherVidyasirimedhi Institute of Science and Technologyen_US
dc.contributor.otherUniversity of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)en_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherBurapha Universityen_US
dc.contributor.otherChiang Mai Universityen_US
dc.contributor.otherSrinakharinwirot Universityen_US
dc.contributor.otherKamnoetvidya Science Academyen_US
dc.date.accessioned2020-06-02T04:06:27Z
dc.date.available2020-06-02T04:06:27Z
dc.date.issued2020-05-15en_US
dc.description.abstract© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We have employed computational approaches—FireProt and FRESCO—to predict thermostable variants of the reductase component (C1) of (4-hydroxyphenyl)acetate 3-hydroxylase. With the additional aid of experimental results, two C1 variants, A166L and A58P, were identified as thermotolerant enzymes, with thermostability improvements of 2.6–5.6 °C and increased catalytic efficiency of 2- to 3.5-fold. After heat treatment at 45 °C, both of the thermostable C1 variants remain active and generate reduced flavin mononucleotide (FMNH−) for reactions catalyzed by bacterial luciferase and by the monooxygenase C2 more efficiently than the wild type (WT). In addition to thermotolerance, the A166L and A58P variants also exhibited solvent tolerance. Molecular dynamics (MD) simulations (6 ns) at 300–500 K indicated that mutation of A166 to L and of A58 to P resulted in structural changes with increased stabilization of hydrophobic interactions, and thus in improved thermostability. Our findings demonstrated that improvements in the thermostability of C1 enzyme can lead to broad-spectrum uses of C1 as a redox biocatalyst for future industrial applications.en_US
dc.identifier.citationChemBioChem. Vol.21, No.10 (2020), 1481-1491en_US
dc.identifier.doi10.1002/cbic.201900737en_US
dc.identifier.issn14397633en_US
dc.identifier.issn14394227en_US
dc.identifier.other2-s2.0-85084935248en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/56111
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084935248&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.titleCreating Flavin Reductase Variants with Thermostable and Solvent-Tolerant Properties by Rational-Design Engineeringen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084935248&origin=inwarden_US

Files

Collections