Publication:
Catalytic performance of Ni catalysts supported on CeO<inf>2</inf> with different morphologies for low-temperature CO<inf>2</inf> methanation

dc.contributor.authorThapanee Jomjareeen_US
dc.contributor.authorPaweennut Sintuyaen_US
dc.contributor.authorAtthapon Srifaen_US
dc.contributor.authorWanida Koo-amornpattanaen_US
dc.contributor.authorSirapassorn Kiatphuengpornen_US
dc.contributor.authorSuttichai Assabumrungraten_US
dc.contributor.authorMasao Sudohen_US
dc.contributor.authorRyo Watanabeen_US
dc.contributor.authorChoji Fukuharaen_US
dc.contributor.authorSakhon Ratchahaten_US
dc.contributor.otherShizuoka Universityen_US
dc.contributor.otherChulalongkorn Universityen_US
dc.contributor.otherThailand National Nanotechnology Centeren_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherAmano Institute of Technologyen_US
dc.date.accessioned2020-10-05T04:28:32Z
dc.date.available2020-10-05T04:28:32Z
dc.date.issued2020-01-01en_US
dc.description.abstract© 2020 Elsevier B.V. In this study, a series of Ni catalysts supported on CeO2 with different morphologies including nanopolyhedrons (PH), nanorods (NR), nanoparticles (NP) and nanocubes (NC) was prepared via hydrothermal / wet impregnation method. The catalytic performance of as-prepared catalysts was evaluated for low-temperature CO2 methanation. The Ni/CeO2 catalysts exhibited a superior CO2 conversion and CH4 selectivity over METH®134, a commercial methanation catalyst. The following order of activity was experimentally found: Ni/CeO2-PH > Ni/CeO2-NR > Ni/CeO2-NP > Ni/CeO2-NC > METH®134. Among different CeO2 morphologies, the Ni/CeO2-NR catalyst exhibited the largest surface area and the highest reducibility, providing the high oxygen vacancies/oxygen storage capacity (OSC). Nevertheless, the strong metal-support interaction (SMSI) between Ni and Ce of the Ni/CeO2-NR catalyst determined by H2-TPR posed a negative impact on the CO2 conversion at low temperature. Unexpectedly, the Ni/CeO2-PH catalyst possessed a single crystalline CeO2 nanostructure of ca. 7.4 nm with relatively high surface area and high reducibility especially at low reduction temperature. Therefore, the Ni/CeO2-PH catalyst was found to be the optimum catalyst for low-temperature CO2 methanation.en_US
dc.identifier.citationCatalysis Today. (2020)en_US
dc.identifier.doi10.1016/j.cattod.2020.08.010en_US
dc.identifier.issn09205861en_US
dc.identifier.other2-s2.0-85090925271en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/59032
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090925271&origin=inwarden_US
dc.subjectChemical Engineeringen_US
dc.subjectChemistryen_US
dc.titleCatalytic performance of Ni catalysts supported on CeO<inf>2</inf> with different morphologies for low-temperature CO<inf>2</inf> methanationen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090925271&origin=inwarden_US

Files

Collections