Publication: Catalytic performance of Ni catalysts supported on CeO<inf>2</inf> with different morphologies for low-temperature CO<inf>2</inf> methanation
dc.contributor.author | Thapanee Jomjaree | en_US |
dc.contributor.author | Paweennut Sintuya | en_US |
dc.contributor.author | Atthapon Srifa | en_US |
dc.contributor.author | Wanida Koo-amornpattana | en_US |
dc.contributor.author | Sirapassorn Kiatphuengporn | en_US |
dc.contributor.author | Suttichai Assabumrungrat | en_US |
dc.contributor.author | Masao Sudoh | en_US |
dc.contributor.author | Ryo Watanabe | en_US |
dc.contributor.author | Choji Fukuhara | en_US |
dc.contributor.author | Sakhon Ratchahat | en_US |
dc.contributor.other | Shizuoka University | en_US |
dc.contributor.other | Chulalongkorn University | en_US |
dc.contributor.other | Thailand National Nanotechnology Center | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Amano Institute of Technology | en_US |
dc.date.accessioned | 2020-10-05T04:28:32Z | |
dc.date.available | 2020-10-05T04:28:32Z | |
dc.date.issued | 2020-01-01 | en_US |
dc.description.abstract | © 2020 Elsevier B.V. In this study, a series of Ni catalysts supported on CeO2 with different morphologies including nanopolyhedrons (PH), nanorods (NR), nanoparticles (NP) and nanocubes (NC) was prepared via hydrothermal / wet impregnation method. The catalytic performance of as-prepared catalysts was evaluated for low-temperature CO2 methanation. The Ni/CeO2 catalysts exhibited a superior CO2 conversion and CH4 selectivity over METH®134, a commercial methanation catalyst. The following order of activity was experimentally found: Ni/CeO2-PH > Ni/CeO2-NR > Ni/CeO2-NP > Ni/CeO2-NC > METH®134. Among different CeO2 morphologies, the Ni/CeO2-NR catalyst exhibited the largest surface area and the highest reducibility, providing the high oxygen vacancies/oxygen storage capacity (OSC). Nevertheless, the strong metal-support interaction (SMSI) between Ni and Ce of the Ni/CeO2-NR catalyst determined by H2-TPR posed a negative impact on the CO2 conversion at low temperature. Unexpectedly, the Ni/CeO2-PH catalyst possessed a single crystalline CeO2 nanostructure of ca. 7.4 nm with relatively high surface area and high reducibility especially at low reduction temperature. Therefore, the Ni/CeO2-PH catalyst was found to be the optimum catalyst for low-temperature CO2 methanation. | en_US |
dc.identifier.citation | Catalysis Today. (2020) | en_US |
dc.identifier.doi | 10.1016/j.cattod.2020.08.010 | en_US |
dc.identifier.issn | 09205861 | en_US |
dc.identifier.other | 2-s2.0-85090925271 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/59032 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090925271&origin=inward | en_US |
dc.subject | Chemical Engineering | en_US |
dc.subject | Chemistry | en_US |
dc.title | Catalytic performance of Ni catalysts supported on CeO<inf>2</inf> with different morphologies for low-temperature CO<inf>2</inf> methanation | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090925271&origin=inward | en_US |