Publication:
Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence

dc.contributor.authorXiang Baien_US
dc.contributor.authorHanchen Wangen_US
dc.contributor.authorLiya Maen_US
dc.contributor.authorYongchao Xuen_US
dc.contributor.authorJiefeng Ganen_US
dc.contributor.authorZiwei Fanen_US
dc.contributor.authorFan Yangen_US
dc.contributor.authorKe Maen_US
dc.contributor.authorJiehua Yangen_US
dc.contributor.authorSong Baien_US
dc.contributor.authorChang Shuen_US
dc.contributor.authorXinyu Zouen_US
dc.contributor.authorRenhao Huangen_US
dc.contributor.authorChangzheng Zhangen_US
dc.contributor.authorXiaowu Liuen_US
dc.contributor.authorDandan Tuen_US
dc.contributor.authorChuou Xuen_US
dc.contributor.authorWenqing Zhangen_US
dc.contributor.authorXi Wangen_US
dc.contributor.authorAnguo Chenen_US
dc.contributor.authorYu Zengen_US
dc.contributor.authorDehua Yangen_US
dc.contributor.authorMing Wei Wangen_US
dc.contributor.authorNagaraj Holalkereen_US
dc.contributor.authorNeil J. Halinen_US
dc.contributor.authorIhab R. Kamelen_US
dc.contributor.authorJia Wuen_US
dc.contributor.authorXuehua Pengen_US
dc.contributor.authorXiang Wangen_US
dc.contributor.authorJianbo Shaoen_US
dc.contributor.authorPattanasak Mongkolwaten_US
dc.contributor.authorJianjun Zhangen_US
dc.contributor.authorWeiyang Liuen_US
dc.contributor.authorMichael Robertsen_US
dc.contributor.authorZhongzhao Tengen_US
dc.contributor.authorLucian Beeren_US
dc.contributor.authorLorena E. Sanchezen_US
dc.contributor.authorEvis Salaen_US
dc.contributor.authorDaniel L. Rubinen_US
dc.contributor.authorAdrian Welleren_US
dc.contributor.authorJoan Lasenbyen_US
dc.contributor.authorChuangsheng Zhengen_US
dc.contributor.authorJianming Wangen_US
dc.contributor.authorZhen Lien_US
dc.contributor.authorCarola Schönlieben_US
dc.contributor.authorTian Xiaen_US
dc.contributor.otherDepartment of Radiologyen_US
dc.contributor.otherDepartment of Engineeringen_US
dc.contributor.otherFaculty of Mathematicsen_US
dc.contributor.otherAlan Turing Instituteen_US
dc.contributor.otherStanford University School of Medicineen_US
dc.contributor.otherShanghai Institute of Materia Medica, Chinese Academy of Sciencesen_US
dc.contributor.otherHuazhong University of Science and Technologyen_US
dc.contributor.otherTufts Universityen_US
dc.contributor.otherUniversity of Texas MD Anderson Cancer Centeren_US
dc.contributor.otherWuhan University of Science and Technologyen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherStanford Universityen_US
dc.contributor.otherAstraZenecaen_US
dc.contributor.otherThe Central Hospital of Wuhanen_US
dc.contributor.otherThe Johns Hopkins Hospitalen_US
dc.contributor.otherTongji Medical Collegeen_US
dc.contributor.otherMSA Capitalen_US
dc.contributor.otherCalmCar Incen_US
dc.contributor.otherWuhan Children's Hospitalen_US
dc.contributor.otherWuhan Blood Centreen_US
dc.date.accessioned2022-08-04T08:25:47Z
dc.date.available2022-08-04T08:25:47Z
dc.date.issued2021-12-01en_US
dc.description.abstractArtificial intelligence provides a promising solution for streamlining COVID-19 diagnoses; however, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalized model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the artificial intelligence (AI) model can be distributedly trained and independently executed at each host institution under a federated learning framework without data sharing. Here we show that our federated learning framework model considerably outperformed all of the local models (with a test sensitivity/specificity of 0.973/0.951 in China and 0.730/0.942 in the United Kingdom), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals without the federated learning framework) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans from 3,336 patients collected from 23 hospitals located in China and the United Kingdom. Collectively, our work advanced the prospects of utilizing federated learning for privacy-preserving AI in digital health.en_US
dc.identifier.citationNature Machine Intelligence. Vol.3, No.12 (2021), 1081-1089en_US
dc.identifier.doi10.1038/s42256-021-00421-zen_US
dc.identifier.issn25225839en_US
dc.identifier.other2-s2.0-85121384145en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/76625
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121384145&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleAdvancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligenceen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121384145&origin=inwarden_US

Files

Collections