Publication:
Structural requirements of the unique disulphide bond and the proline-rich motif within the α4-α5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa δ-endotoxin

dc.contributor.authorSatita Tapaneeyakornen_US
dc.contributor.authorWalairat Pornwiroonen_US
dc.contributor.authorGerd Katzenmeieren_US
dc.contributor.authorChanan Angsuthanasombaten_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-06-21T08:09:30Z
dc.date.available2018-06-21T08:09:30Z
dc.date.issued2005-05-06en_US
dc.description.abstractBoth the disulphide bond (Cys192-Cys199) and the proline-rich motif (Pro193ProAsnPro196) in the long loop connecting the α4-α5 transmembrane hairpin of the Cry4Aa mosquito-larvicidal protein have been found to be unique among the Bacillus thuringiensis Cry δ-endotoxins. In this study, their structural requirements for larvicidal activity of the Cry4Aa toxin were investigated. C192A and C199A mutant toxins were initially generated and over-expressed in Escherichia coli cells as 130-kDa protoxins at levels comparable to that of the wild-type toxin. When their activities against Aedes aegypti larvae were determined, Escherichia coli cells expressing each mutant toxin retained the high-level toxicity. Further mutagenic analysis of the PPNP motif revealed that an almost complete loss in larvicidal activity was observed for the C199A/P193A double mutant, whereas a small reduction in toxicity was shown for the C199A/P194A and C199A/P196A mutants. Increasing the flexibility of the α4-α5 loop through C199A/P193G, C199A/P194G/P196A, C199A/P194A/P196G, and C199A/P194G/P196G mutations significantly decreased the larvicidal activity. Similar to the wild-type protoxin, all mutant toxins were structurally stable upon solubilisation and trypsin activation in carbonate buffer, pH 9.0. These findings are the first biological evidence for a structural function in larvicidal activity of the unique disulphide bridge as well as the proline-rich motif within the α4-α5 loop of the Cry4Aa toxin. © 2005 Elsevier Inc. All rights reserved.en_US
dc.identifier.citationBiochemical and Biophysical Research Communications. Vol.330, No.2 (2005), 519-525en_US
dc.identifier.doi10.1016/j.bbrc.2005.03.006en_US
dc.identifier.issn0006291Xen_US
dc.identifier.other2-s2.0-15744376728en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/16346
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=15744376728&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleStructural requirements of the unique disulphide bond and the proline-rich motif within the α4-α5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa δ-endotoxinen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=15744376728&origin=inwarden_US

Files

Collections