Publication:
Oxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzene

dc.contributor.authorNantaporn Buthbumrungen_US
dc.contributor.authorChulabhorn Mahidolen_US
dc.contributor.authorPanida Navasumriten_US
dc.contributor.authorJeerawan Promvijiten_US
dc.contributor.authorPotchanee Hunsontien_US
dc.contributor.authorHerman Autrupen_US
dc.contributor.authorMathuros Ruchirawaten_US
dc.contributor.otherChulabhorn Research Instituteen_US
dc.contributor.otherAarhus Universiteten_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-07-12T02:51:12Z
dc.date.available2018-07-12T02:51:12Z
dc.date.issued2008-04-15en_US
dc.description.abstractTraffic related urban air pollution is a major environmental health problem in many large cities. Children living in urban areas are exposed to benzene and other toxic pollutants simultaneously on a regular basis. Assessment of benzene exposure and oxidative DNA damage in schoolchildren in Bangkok compared with the rural schoolchildren was studied through the use of biomarkers. Benzene levels in ambient air at the roadside adjacent to Bangkok schools was 3.95-fold greater than that of rural school areas. Personal exposure to benzene in Bangkok schoolchildren was 3.04-fold higher than that in the rural schoolchildren. Blood benzene, urinary benzene and urinary muconic acid (MA) levels were significantly higher in the Bangkok schoolchildren. A significantly higher level of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in leukocytes and in urine was found in Bangkok children than in the rural children. There was a significant correlation between individual benzene exposure level and blood benzene (rs= 0.193, P < 0.05), urinary benzene (rs= 0.298, P < 0.05), urinary MA (rs= 0.348, P < 0.01), and 8-OHdG in leukocyte (rs= 0.130, P < 0.05). In addition, a significant correlation between urinary MA and 8-OHdG in leukocytes (rs= 0.241, P < 0.05) was also found. Polymorphisms of various xenobiotic metabolizing genes responsible for susceptibility to benzene toxicity have been studied; however only the GSTM1 genotypes had a significant effect on urinary MA excretion. Our data indicates that children living in the areas of high traffic density are exposed to a higher level of benzene than those living in rural areas. Exposure to higher level of benzene in urban children may contribute to oxidative DNA damage, suggesting an increased health risk from traffic benzene emission. © 2008 Elsevier Ireland Ltd. All rights reserved.en_US
dc.identifier.citationChemico-Biological Interactions. Vol.172, No.3 (2008), 185-194en_US
dc.identifier.doi10.1016/j.cbi.2008.01.005en_US
dc.identifier.issn00092797en_US
dc.identifier.other2-s2.0-41049094363en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/19872
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=41049094363&origin=inwarden_US
dc.subjectPharmacology, Toxicology and Pharmaceuticsen_US
dc.titleOxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzeneen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=41049094363&origin=inwarden_US

Files

Collections