Publication: Positive solutions for classes of multiparameter elliptic semipositone problems
dc.contributor.author | Scott Caldwell | en_US |
dc.contributor.author | Alfonso Castro | en_US |
dc.contributor.author | Ratnasingham Shivaji | en_US |
dc.contributor.author | Sumalee Unsurangsie | en_US |
dc.contributor.other | Mississippi State University | en_US |
dc.contributor.other | Harvey Mudd College | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2018-08-24T01:56:38Z | |
dc.date.available | 2018-08-24T01:56:38Z | |
dc.date.issued | 2007-06-29 | en_US |
dc.description.abstract | We study positive solutions to multiparameter boundary-value problems of the form -Δu = λg(u) + μf(u) in Ω u = 0 on ∂Ω, where λ > 0, μ, > 0, Ω ⊆ Rn; n ≥ 2 is a smooth bounded domain with ∂Ω in class C2and Δ is the Laplacian operator. In particular, we assume g(0) > 0 and superlinear while f(0) < O, sublinear, and eventually strictly positive. For fixed μ, we establish existence and multiplicity for A small, and nonexistence for A large. Our proofs are based on variational methods, the Mountain Pass Lemma, and sub-super solutions. © 2007 Texas State University. | en_US |
dc.identifier.citation | Electronic Journal of Differential Equations. Vol.2007, (2007), 1-10 | en_US |
dc.identifier.issn | 10726691 | en_US |
dc.identifier.other | 2-s2.0-34547303381 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/24619 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547303381&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | Positive solutions for classes of multiparameter elliptic semipositone problems | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547303381&origin=inward | en_US |