Publication:
Numerical verification of certain oscillation result on time scales

dc.contributor.authorWichuta Sae-Jieen_US
dc.contributor.authorKornkanok Bunwongen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-09-13T06:34:09Z
dc.date.available2018-09-13T06:34:09Z
dc.date.issued2009-09-01en_US
dc.description.abstractWe first investigate several examples of second order nonlinear dynamic equation (a(xδ)α)δ(t)+q(t) xβ(t)=0 which can also be rewritten in the form of two-dimensional dynamic system xδ(t)=b(t)g[y σ(t)]and yδ(t) = -c(t)f[x(t)] where α and ß are ratios of positive odd integers, o and q are real-valued, positive and rd-continuous functions on a time scale T C R with sup T = oo. Under oscillation criteria, some equations are then selected. Exploring the numerical solution of corresponding dynamic system individually on different time scales not only visualizes the oscillating motion as theoretically expected but also reveals other interesting behavior patterns. This study finally suggests that a time domain also plays an important role on the boundedness of oscillatory solution. © Dynamic Publishers Inc.en_US
dc.identifier.citationNeural, Parallel and Scientific Computations. Vol.17, No.3-4 (2009), 317-338en_US
dc.identifier.issn10615369en_US
dc.identifier.other2-s2.0-77957005855en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/27493
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957005855&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleNumerical verification of certain oscillation result on time scalesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957005855&origin=inwarden_US

Files

Collections