Publication:
Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane

dc.contributor.authorAkasit Siriphongphaewen_US
dc.contributor.authorPimpaya Pisnupongen_US
dc.contributor.authorJirarut Wongkongkatepen_US
dc.contributor.authorPranee Inprakhonen_US
dc.contributor.authorAlisa S. Vangnaien_US
dc.contributor.authorKohsuke Hondaen_US
dc.contributor.authorHisao Ohtakeen_US
dc.contributor.authorJunichi Katoen_US
dc.contributor.authorJun Ogawaen_US
dc.contributor.authorSakayu Shimizuen_US
dc.contributor.authorVlada B. Urlacheren_US
dc.contributor.authorRolf D. Schmiden_US
dc.contributor.authorThunyarat Pongtharangkulen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCommission on Higher Educationen_US
dc.contributor.otherChulalongkorn Universityen_US
dc.contributor.otherOsaka Universityen_US
dc.contributor.otherHiroshima Universityen_US
dc.contributor.otherKyoto Universityen_US
dc.contributor.otherHeinrich Heine Universitaten_US
dc.contributor.otherUniversitat Stuttgarten_US
dc.date.accessioned2018-06-11T04:35:53Z
dc.date.available2018-06-11T04:35:53Z
dc.date.issued2012-07-01en_US
dc.description.abstractOxygenases-based Escherichia coli whole-cell biocatalyst can be applied for catalysis of various commercially interesting reactions that are difficult to achieve with traditional chemical catalysts. However, substrates and products of interest are often toxic to E. coli, causing a disruption of cell membrane. Therefore, organic solventtolerant bacteria became an important tool for heterologous expression of such oxygenases. In this study, the organic solvent-tolerant Bacillus subtilis 3C5N was developed as a whole-cell biocatalyst for epoxidation of a toxic terminal alkene, 1-hexene. Comparing to other hosts tested, high level of tolerance towards 1-hexene and a moderately hydrophobic cell surface of B. subtilis 3C5N were suggested to contribute to its higher 1,2-epoxyhexane production. A systematic optimization of reaction conditions such as biocatalyst and substrate concentration resulted in a 3.3-fold increase in the specific rate. Co-expression of glucose dehydrogenase could partly restored NADPH-regenerating ability of the biocatalyst (up to 38% of the wild type), resulting in approximately 53% increase in specific rate representing approximately 22-fold increase in product concentration comparing to that obtained prior to an optimization. © Springer-Verlag 2012.en_US
dc.identifier.citationApplied Microbiology and Biotechnology. Vol.95, No.2 (2012), 357-367en_US
dc.identifier.doi10.1007/s00253-012-4039-7en_US
dc.identifier.issn14320614en_US
dc.identifier.issn01757598en_US
dc.identifier.other2-s2.0-84864713846en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/13688
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864713846&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectImmunology and Microbiologyen_US
dc.titleDevelopment of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexaneen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864713846&origin=inwarden_US

Files

Collections