Publication:
Effects of process parameters on compressive property of FDM with ABS

dc.contributor.authorSupphachai Nathaphanen_US
dc.contributor.authorWorrasid Trutassanawinen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2022-08-04T08:38:26Z
dc.date.available2022-08-04T08:38:26Z
dc.date.issued2021-01-01en_US
dc.description.abstractPurpose: This work aims to investigate the interaction effects of printing process parameters of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) technology on both the dimensional accuracy and the compressive yield stress. Another purpose is to determine the optimum process parameters to achieve the maximum compressive yield stress and dimensional accuracy at the same time. Design/methodology/approach: The standard cylindrical specimens which produced from ABS by using an FDM 3D printer were measured dimensions and tested compressive yield stresses. The effects of six process parameters on the dimensional accuracy and compressive yield stress were investigated by separating the printing orientations into horizontal and vertical orientations before controlling five factors: nozzle temperature, bed temperature, number of shells, layer height and printing speed. After that, the optimum process parameters were determined to accomplish the maximum compressive yield stress and dimensional accuracy simultaneously. Findings: The maximum compressive properties were achieved when layer height, printing speed and number of shells were maintained at the lowest possible values. The bed temperature should be maintained 109°C and 120°C above the glass transition temperature for horizontal and vertical orientations, respectively. Practical implications: The optimum process parameters should result in better FDM parts with the higher dimensional accuracy and compressive yield stress, as well as minimal post-processing and finishing techniques. Originality/value: The important process parameters were prioritized as follows: printing orientation, layer height, printing speed, nozzle temperature and bed temperature. However, the number of shells was insignificant to the compressive property and dimensional accuracy. Nozzle temperature, bed temperature and number of shells were three significant process parameters effects on the dimensional accuracy, while layer height, printing speed and nozzle temperature were three important process parameters influencing compressive yield stress. The specimen fabricated in horizontal orientation supported higher compressive yield stress with wide processing ranges of nozzle and bed temperatures comparing to the vertical orientation with limited ranges.en_US
dc.identifier.citationRapid Prototyping Journal. Vol.27, No.5 (2021), 905-917en_US
dc.identifier.doi10.1108/RPJ-12-2019-0309en_US
dc.identifier.issn13552546en_US
dc.identifier.other2-s2.0-85106560044en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/76981
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106560044&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleEffects of process parameters on compressive property of FDM with ABSen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106560044&origin=inwarden_US

Files

Collections